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SUMMARY 

 Reaching a sustainable coffee production under frequent threats or limitations is a major 

concern for farmers and other actors in the coffee sector. Climate change effects are going to 

intensify progressively over time, and actions to adapt coffee systems need to be implemented. 

Given the complex interactions that occur in coffee agroforestry systems [CAFS] in Central 

America between coffee plants, trees and inputs, adaptation actions imply adjustments in the 

farming practices, which in turn influence the tradeoffs and synergies between productivity, 

adaptation, and mitigation to climate change. Knowing the potential of current coffee systems 

may help to define and promote the best farming strategies for the future, considering potential 

threats as well as the objectives of farmers for their plantations.  

The primary objective of this thesis was therefore to define what the potential synergies and 

tradeoffs between productivity, adaptation and mitigation of CAFS in Central America are under 

climate change. Answering this question required two preliminary studies, one to identify what 

the impacts of climate change are on the coffee areas in the region, and one to examine what the 

potential of shading as an adaptation practices is. The Bayesian Network [BN] framework was 

selected as the main modeling environment, as it can use different sources of information, such 

as expert knowledge or data, summarize complex systems and deal with uncertainty.  

 First, a land evaluation was conducted for the Central American region; this included the 

creation of a new BN model “Agroecological Land Evaluation for Coffea arabica L.” [ALECA] and 

the inference of the land suitability under current and climate change conditions. The results 

indicate that the current coffee areas will suffer a drastic reduction in their land suitability: About 

half of the areas currently classified as excellent and very good areas for coffee will become of 

moderate and marginal suitability for coffee by 2050 under the less severe climate change 

scenarios. This land suitability downgrade will likely decrease the quantity and quality of the 

coffee produced in the region.  

Second, considering the adaptation potential of the cooling effect of shade trees in coffee 

agroforestry systems, a new simple BN model was created to infer the required shade level of 

coffee plantations based on air temperature. Suitability functions from ALECA were integrated 

into the shade model to estimate the air temperature suitability under shaded and unshaded 

conditions. The use of shade in the coffee plantations of Nicaragua was discussed and compared 

with inferred shade values to test and validate the model. Then, the required shade level and the 

corresponding effect on air temperature suitability in 2000 and 2050 [RCP 4.5] was inferred for 

the coffee areas in Nicaragua. A general increment in the shade levels is required, even in areas 
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where shading is currently not necessary, and the number of coffee areas that require high shade 

levels [≥ 60%] will double from 2000 to 2050. At lower altitudes, the cooling effect of shading may 

not be enough to alleviate the future warming conditions. 

Third, there are efforts to promote agricultural systems oriented to adapt to and mitigate 

climate change. Hence, a new BN model was developed to identify the most promising farming 

strategies used in different farm types for coffee farming under climate change. For this, first a 

new farm typology system was created to capture and depict the potential for productivity, 

adaptation, and mitigation [PAM] synergies in CAFS. Five PAM-typologies were identified, 

differing in their shade levels, input intensities, and dominant tree types. In general, the farm 

type dominated by woody are located at low and medium altitude, used medium to high shade 

levels, and has higher synergies for productivity, adaptation and mitigation objectives; and the 

type dominated by musaceas are located at medium to high altitudes, used low to medium 

shading and has high synergy potentials for productivity and adaptation. 

In a second step, a new BN model was used to identify the most promising PAM-typologies 

in 2000 and 2050 [RCP 4.5]. As objectives, a higher net income was set for productivity and a 

higher carbon content of the system for mitigation. The required shade levels obtained from the 

shade model were included as adaptation measures. The modeling targeted only productivity 

and adaptation for 2000; and productivity, adaptation, and mitigation for 2050. The PAM-

typologies characterized by low to medium shade levels and high farming intensification were 

recommended for 2000, and medium to high shade levels and medium intensification for 2050. 

The recommended higher shade levels to alleviate the warming conditions in 2050 produced an 

increment about 50% in the carbon content of the CAFS and a reduction of less than 10% of the 

net income. In addition to the main coffee modeling studies, a BN model was developed to infer 

missing climate variables based on proxy variables, as missing data is a common situation in the 

land planning process, especially in developing countries. Relative humidity was used as the 

missing variable and air temperature, precipitation, solar radiation and wind as proxies.  

This thesis shows that even under a relatively optimistic climate change scenario, the coffee 

areas in Central America will suffer a downgrade in the land suitability for cultivation of Coffea 

arabica L. An adaptation of shade levels will help to alleviate the warming conditions. A new farm 

typology of CAFS and a new model for productivity-adaptation-mitigation synergies are 

introduced to improve the analysis and evaluation of farming practices and strategies considering 

multiple objectives. If productivity, adaptation, and mitigation objectives are included in the 

farming strategy, an increase in the shade level and carbon content and a decrease in net incomes 

is observed. Only different shade levels and an intensification of management were considered. 
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To further improve the performance of CAFS under future conditions, more and new adaptation 

practices or strategies need to be tested in further studies.  
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ZUSAMMENFASSUNG 

Die Erreichung einer nachhaltigen Kaffeeproduktion unter Bedrohungen wie dem 

Klimawandel oder Einschränkungen ist für Landwirte und andere Akteure im Kaffeesektor ein 

großes Anliegen. Die Auswirkungen des Klimawandels werden sich im Laufe der Zeit allmählich 

verstärken, und es müssen Maßnahmen zur Anpassung der Kaffeeanbausysteme ergriffen 

werden. Die komplexen Wechselwirkungen, die in den Kaffee-Agroforstsystemen in 

Mittelamerika zwischen Kaffeepflanzen, Bäumen und Betriebsmitteln bestehen, erfordern 

komplexe Anpassungen in den Anbaumethoden, die wiederum die Tradeoffs und Synergien 

zwischen Produktivität, Anpassung und Klimaschutz beeinflussen. Die Kenntnis des Potenziale 

der derzeitigen Kaffeeanbausysteme kann dazu beitragen, die besten Anbaustrategien für die 

Zukunft zu definieren und zu fördern, wobei sowohl potenzielle Gefahren als auch die Ziele der 

Landwirte für ihre Flächen berücksichtigt werden.  

Das vorrangige Ziel dieser Arbeit war es daher, zu definieren, welches die potenziellen 

Synergien und Tradeoffs zwischen Produktivität, Anpassung an den Klimawandel und 

Klimaschutz von Kaffee-Agroforstsystemen in Mittelamerika sind; sowohl unter heutigen als 

auch zukünftigen klimatischen Bedingungen. Die Beantwortung dieser Frage erforderte zwei 

Vorstudien, eine, um die Auswirkungen des Klimawandels auf die Kaffeegebiete in der Region 

zu ermitteln, und eine zweite, um zu untersuchen, welches Potenzial die Beschattung als 

Anpassungspraktik hat. Als Instrument wurden „Bayesian Networks“ [BN] gewählt, welche 

verschiedene Informationsquellen wie Expertenwissen oder Daten nutzen, komplexe Systeme 

zusammenfassen und mit Unsicherheiten umgehen können.  

Zunächst wurde eine Landbewertung für die mittelamerikanische Region durchgeführt, 

wofür ein neues BN-Modell "Agroecological Land Evaluation for Coffea arabica L." [ALECA] 

entwickelt und anschließend die Landeignung für den Kaffeeanbau unter aktuellen und 

zukünftigen klimatischen Bedingungen modelliert wurde. Die Ergebnisse deuten darauf hin, 

dass sich die Fläche, auf der zurzeit Kaffee angebaut wird, drastisch verringern wird: Etwa die 

Hälfte der derzeit als exzellent und sehr gut eingestuften Fläche für Kaffee wird bis 2050 unter 

den milderen Klimawandelszenarien nur noch von moderater und geringer Eignung für Kaffee 

sein. Diese Herabstufung der Landeignung wird die Quantität und Qualität des in der Region 

erzeugten Kaffees wahrscheinlich verringern.  

In einem zweiten Schritt wurde ein weiteres BN-Modell entwickelt, welches die kühlende 

Wirkung von Schattenbäumen in Kaffee-Agrarforstsystemen berücksichtigt, um einen der 

Lufttemperatur angemessene Beschattungsgrad zu ermitteln. Auf diese Weise können die 
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Kaffeeflächen besser an neue klimatische Bedingungen angepasst werden. Hierfür wurden einige 

der Landeignungsfunktionen aus ALECA in das Schattenmodell integriert. Um das Modell zu 

testen und zu validieren, wurde die Verwendung von Schatten in den Kaffeeplantagen 

Nicaraguas erläutert und mit den durch das Modell ermittelten Beschattungsgraden verglichen. 

Angewendet wurde das Modell dann, um die erforderlichen Beschattungsgrade aller 

Kaffeeflächen Nicaraguas sowohl im Jahr 2000 als auch 2050 [RCP 4.5] zu berechnen. Eine 

generelle Erhöhung der Beschattungsgrade ist erforderlich, auch auf Flächen, die derzeit keine 

Beschattung benötigen. Das Ausmaß der Flächen, die eine hohe Beschattung erfordern [≥60%], 

wird sich bis zum Jahr 2050 verdoppeln, und in niedrigeren Höhenlagen reicht die kühlende 

Wirkung der Beschattung möglicherweise nicht aus, um die zukünftigen 

Erwärmungsbedingungen zu mildern. 

Es bestehen Bemühungen, Agrarsysteme zu fördern, die auf die Anpassung an den 

Klimawandel und dessen Eindämmung ausgerichtet sind. Daher wurde im dritten Teil der 

Dissertation ein BN-Modell entwickelt, das die vielversprechendsten Anbaustrategien für 

verschiedene Kaffee-Agroforstsysteme unter sich wandelnden klimatischen Bedingungen 

identifizieren kann. Hierfür wurde zunächst ein neues Klassifizierungssystem für 

Kaffeeplantagen geschaffen, welches helfen soll, die Potenziale für Produktivität, Anpassung 

und Klimaschutz [PAM] der Flächen besser zu erfassen und darzustellen. Es wurden fünf PAM-

Typologien identifiziert, die sich in ihren Beschattungsgraden, Betriebsmitteln und dominanten 

Baumarten unterscheiden. Im Allgemeinen befinden sich die von Gehölzen dominierten 

Kaffeeplantagen in niedriger und mittlerer Höhe, sie haben mittlere bis hohe Beschattungsgrade 

zeigen viele Synergien bei Produktivität, Anpassung und Klimaschutz. Die von 

Bananengewächsen dominierten Kaffeeplantagen befinden sich auf mittleren bis hohen Höhen, 

haben niedrige bis mittlere Beschattungsgrade und zeigen ebenfalls viele Synergiepotenziale bei 

Produktivität und Anpassung. 

In einem zweiten Schritt wurde das BN-Modell verwendet, um die vielversprechendsten 

PAM-Typologien für die Jahre 2000 und 2050 zu identifizieren. Als Ziele wurden ein höheres 

Nettoeinkommen, das heißt eine Steigerung der Produktivität, und als Klimaschutzmaßnahme 

ein höherer Kohlenstoffgehalt des Systems festgelegt. Als Anpassungsmaßnahme wurden die 

aus dem Schattenmodell gewonnenen erforderlichen Beschattungsgrade einbezogen. Das 

Klimaschutzziel wurde nur für die Modellierung des Jahres 2050 verwendet. Für das Jahr 2000 

eignen sich besonders diejenigen PAM-Typologien, welche sich durch niedrige bis mittlere 

Beschattungsgrade und ein hohes Maß landwirtschaftlicher Intensivierung auszeichnen. Für das 

Jahr 2050 hingegen eigenen sich PAM-Typologien mit mittleren bis hohen Beschattungsgraden 
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und einer mittleren Intensivierung besser. Die empfohlenen höheren Beschattungsgrade im Jahr 

2050 führen zu einem Anstieg des systemeigenen Kohlenstoffgehalts von 50% und zu einer 

Verringerung des Nettoeinkommens um 10%. 

Um die Modellierung in den drei Hauptteilen der Dissertation zu unterstützen, wurde ein 

zusätzliches BN Modell entwickelt, welches fehlende Klimavariablen mittels Proxy-Variablen 

abschätzt, da besonders in Entwicklungsländern Datensätze oft Lücken aufweisen oder Daten 

gar nicht erhoben werden. Hier zum Beispiel wurde die relative Luftfeuchtigkeit anhand von 

Lufttemperatur, Niederschlag, Sonneneinstrahlung und Wind abgeschätzt.  

Diese Arbeit zeigt, dass sich die Flächen, auf denen momentan in Mittelamerika Coffea 

arabica L. angebaut wird, in Zukunft nicht mehr so gut wie jetzt für den Kaffeeanbau eignen 

werden, selbst unter einem relativ optimistischen Klimaszenario. Um die Auswirkungen des 

Klimawandels abzumildern, können die Beschattungsgrade angepasst werden, da hierdurch die 

Temperaturen in den Kaffeeplantagen leicht sinken. Zur besseren Erfassung der Synergien und 

Tradeoffs zwischen dieser Anpassungsmaßnahme und Produktivität und Klimaschutz wurde 

ein neues Klassifizierungssystem für Kaffeeplantagen geschaffen. Wenn sowohl Produktivitäts-, 

als auch Anpassungs- und Klimaschutzziele in die Anbaustrategie einbezogen werden, kann eine 

Erhöhung des Beschattungsgrades und des Kohlenstoffgehalts sowie ein Rückgang des 

Nettoeinkommens beobachtet werden. In dieser Arbeit wurden nur unterschiedliche 

Beschattungsgrade und eine Intensivierung des Managements berücksichtigt. Um die Leistung 

von Kaffee-Agroforstsystemen unter zukünftigen klimatischen Bedingungen weiter zu 

verbessern, müssen mehr und neue Anpassungspraktiken oder -strategien in weiteren Studien 

getestet werden. 
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1. INTRODUCTION 

Agricultural systems are diverse in complexity and purpose. Such diversity is the result of 

the interaction between land conditions and human decisions in rural areas (McConnell and 

Dillon, 1997; Miller and Gross, 2011; Thrall et al., 2010). The current state of coffee production 

systems in Central America have been shaped by a series of consecutive decisions made by 

farmers to deal with natural, economic and political factors at different periods in time (Charlip, 

1999; Kaimowitz, 1996; Samper, 1999). Ideally, the planning and decision process begins even 

before the plantations are established, when farmers or agronomists or both evaluate the qualities 

of the land for coffee production (FAO, 1993; Somarriba, 2009). The land evaluation considers the 

state of agronomical factors such climate, soil, and landforms as well as other non-agronomical 

factors like land ownership, accessibility or existing infrastructure (FAO, 1976; Hopkins, 2014; 

McRae and Burnham, 1981). Subsequently, the degrees of optimality of the land suitability factors 

are examined, the limitations assessed and possible farming practices to overcome such 

limitations defined and evaluated. Finally, the farmer’s individual preference, expertise, 

experience, assets, and risk aversion are considered to define their ultimate farming strategy 

(Somarriba, 2009). If the land suitability or the farmer’s objectives change, or new opportunities 

or crises appear, the farming strategy should be adapted. 

In the last decades, several crises and extreme events have negatively impacted the coffee 

sector in Central America, such as recurrent low coffee prices, rising production costs, coffee rust 

epidemics, land use changes, armed conflicts and wars, and lack of proper government policies 

(Avelino et al., 2015a; Blackman et al., 2006; CEPAL, 2002; Charlip, 1999; FAO, 2001; Kaimowitz, 

1996; Pérez, 2001; Samper, 1999). Climate change is the next big challenge for the region (Gay et 

al., 2006; Haggar and Schepp, 2012), in some cases even exacerbating current problems like coffee 

rust epidemics (Alves et al., 2011). In order to rise to the challenge, the magnitude of the possible 

impacts of climate change on the coffee sector needs to be appraised, and adaptation strategies 

planned. Such information plays a vital role in the decision-making process to define the most 

suitable farming strategies at the local level and to formulate adaptation policies at the national 

level. This is a challenge, however, as the coffee systems in the region are very diverse, and tools 

for aiding in the decision-making not readily available. 

In Central America, most of the coffee is cultivated under the shade of trees in agroforestry 

systems [CAF]. CAFs provide multiple benefits and advantages to farmers and ecosystems such 

as stabilizing the coffee production, income diversification by providing more than one good, 

provision of food and shelter to wild species, reduction of erosion, and enhancement of the soil 
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and microclimatic conditions in the coffee plantation (Barradas and Fanjul, 1986; Beer, 1987; 

Blanco and Aguilar, 2015; Lin and Lin, 2010; Moguel and Toledo, 1999; Perfecto et al., 1996). The 

regulation of the microclimate is one of the most promising services of agroforestry, as it can 

serve as an adaptation strategy. Compared to full-sun conditions, shading reduces the 

temperature and maintains the humidity in the coffee plantation (Lin, 2010). CAFS also have a 

high mitigation potential compared to unshaded crop systems due to the perennial nature of trees 

and coffee plants, which provides a standing stock of carbon and a source of organic matter to 

the soil carbon compartment (Ehrenbergerová et al., 2015; Segura et al., 2006). Finding the correct 

level of shade is a delicate matter, however, as variations in shade require changes in the number 

of trees, and provoke changes in coffee yields and the dynamics of weeds, pests, and diseases 

(Aguilar et al., 2003; Haggar et al., 2011; MacVean, 1997; Mariño et al., 2016). These interactions 

can be depicted as synergies and tradeoffs (Harvey et al., 2014). Exploring the synergies and 

tradeoffs between productivity, adaptation, and mitigation in the existing CAFS may help to 

identify the most promising CAFS for future farm planning and help with policy-making in the 

region. 

However, in comparison to coffee grown in monoculture, coffee agroforestry systems are 

more difficult to model because of their vertical, horizontal and temporal complexity (Roupsard 

et al., 2009; Somarriba et al., 2004). The available process-based models for CAFS have many 

parameters, are highly data-demanding and are either limited to plot level analyses or the study 

of particular interactions between components of CAFS (Luedeling et al., 2016; Rodríguez et al., 

2011; Van Noordwijk and Lusiana, 1998; van Oijen et al., 2010). Given the technical limitations in 

purely process-based modeling, innovative modeling frameworks are needed that capture and 

model CAFS in such manner that allows their application and usability in decision-making 

processes (Luedeling et al., 2016; Roupsard et al., 2009). A land suitability evaluation framework 

is such an option, as it is well suited to deal with the impacts of climate change on coffee 

production (Hood et al., 2006).  

Land suitability evaluations for coffee have been conducted for countries in the Caribbean 

and African region. They integrated climate, soil and landform in a geographic information 

system framework under current conditions, but did not consider the uncertainty surrounding 

the input and output data (Mighty, 2015; Nzeyimana et al., 2014), uncertainty due to missing or 

incomplete data is a common situation in agricultural planning in those regions. Furthermore, 

some global studies have evaluated the impacts of climate change on coffee production 

considering only the climatic suitability for coffee (Bunn et al., 2014; Ovalle-Rivera et al., 2015). 

They used models based on the presence/absence data of wild species (Guillera-Arroita et al., 
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2014; Phillips et al., 2006; Yackulic et al., 2013), which raises some concerns, as cultivated coffee 

does not follow natural patterns of distribution. In conclusion, there is a lack of tools and 

information about current and future land suitability for cultivated coffee that also consider 

uncertainty and can be used as an aid in decision-making. Such tools and information need to be 

available to define strategies to tackle the impacts of climate change on coffee production in 

Central America. 

Bayesian Networks [BNs] have been identified as suitable tools to depict environmental and 

decision making processes. BNs only require a few parameters and can be used to summarize 

complex systems, integrate different sources of information and knowledge, and deal with 

different sources of uncertainty. The graphical user interface with its explicit and interactive 

environment provides users like farmers, agronomists, or land managers the opportunity to 

easily understand the system and explore the implications of different management decisions 

(Aguilera et al., 2011; McCann et al., 2006; Uusitalo, 2007). More details on the advantages and 

disadvantage of BNs can be found in the different chapters of the thesis.  

1.1. Outline of the dissertation 

In this thesis, I introduce a new Bayesian Network framework to evaluate the land suitability 

for coffee production and the synergies and tradeoffs between productivity, adaptation and 

mitigation to climate change in coffee agroforestry systems. The building of the framework 

includes a series of steps where new tools and data are generated in an integrated manner.    

In Chapter 2, a new BN model is introduced and used to evaluate the land suitability for 

coffee production under current conditions in Central America. The land suitability is estimated 

based on climate, soil and landform data. Different types of data uncertainty are discussed and 

evaluated. In Chapter 3, the expected land suitability under climate change is estimated for the 

region using climate data projections based on RCPs 2.6, 4.5 and 8.5 for 2050 and 2080. As an 

option to deal with missing data in land evaluations, I provide a methodology to infer missing 

climate variables from proxy variables in Chapter 4. The chapters provide novel tools and a 

valuable source of information for the coffee sector in Central America.   

In Chapter 5, a new simple BN model of shade levels in CAFs is introduced and used to 

estimate the required shade levels and the impact on the air temperature suitability for coffee 

cultivation in different regions of Nicaragua. The section includes a comparison between 

observed and modeled shade values and a discussion about the usage of shading by farmers. 

Then, the required shade levels under a scenario of climate change are estimated for the coffee 
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areas in Nicaragua. To the best of my knowledge, this is the first time that this kind of analysis 

has been done for the region. 

In Chapter 6, I describe the creation of a new farm typology to better explore the tradeoffs 

and synergies between productivity, adaptation and mitigation objectives in coffee agroforestry 

systems. In Chapter 7, a new BN model is presented that identifies the most suitable farm 

typology for each coffee area in Nicaragua under climate change by determining the type with 

the highest productivity and mitigation potential.  

The following figure summarizes the research framework conducted in this thesis by 

chapters: 
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2. MODELING LAND SUITABILITY FOR              

Coffea arabica L. IN CENTRAL AMERICA1 

2.1. Introduction 

The agricultural sector faces the challenge of producing enough goods for a growing 

population. This challenge is exacerbated by changes in climate and the depletion of soil and 

water, factors that determine the suitability of land for agricultural production (Godfray et al., 

2010). Information about the spatiotemporal variations of these factors is necessary for efficient 

agricultural planning processes at the farm, local and regional scales. Agricultural planning 

involves the inventory and classification of available resources to define the biophysical potential 

of land for crop production, called land suitability evaluation. Most land suitability evaluation 

systems assess climatic, soil and landform factors, while others also include anthropogenic factors 

such as local production systems, relevant cultural customs, policies, others (Littleboy et al., 1996; 

McRae and Burnham, 1981; Verheye, 1987).  

 Commonly, land suitability evaluation systems are used at national or regional scales to 

generate spatial representations of land suitability for different crops or animal production 

systems. However, they can also be used at local or farm level by farmers and other stakeholders 

themselves. The advantage, in this case, is that a more accurate evaluation can be performed due 

to the availability of more detailed farm data, but often the expertise required to operate the 

models is lacking (Jakeman et al., 2006). Another drawback is that the majority of land suitability 

evaluation systems provide limited options to deal with uncertainty, which is a common feature 

in land evaluation processes, and environmental modeling in general (Refsgaard et al., 2007). 

Bayesian networks offer a solution to this problem: BNs can manage uncertainty (of data and 

knowledge), integrate expert knowledge, and combine qualitative and quantitative information. 

Bayesian networks can also integrate complex systems from different domains and aggregate 

model dimensions to the level required, making them a suitable tool for ecological modeling and 

land suitability evaluations (Aguilera et al., 2011; Chen and Pollino, 2012; Poppenborg and 

Koellner, 2014).  

                                                 
1 Lara-Estrada, L., Rasche, L., Schneider, U.A., 2017. Modeling land suitability for Coffea arabica 

L. in Central America. Environmental Modelling & Software 95, 196–209. 

https://doi.org/10.1016/j.envsoft.2017.06.028 

https://www.sciencedirect.com/science/article/pii/S1364815216301979
https://www.sciencedirect.com/science/article/pii/S1364815216301979
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Land suitability evaluation systems are especially relevant for managing risks in cropping 

systems with perennials, as the initial investments are higher, there is a waiting period of 3-4 

years before the first harvest can be brought in, and resources are tied up for more extended 

periods. One such example is coffee (Coffea arabica L.). Many smallholder farmers’ livelihood in 

coffee producing countries depends on its cultivation. Its production is reliant on a number of 

biophysical factors, such as climate, soil, landform, genetics and farming practices, whose 

relevance varies from site to site (Bertrand et al., 2011; Haggar et al., 2011; Silva et al., 2013; Wang 

et al., 2015). In recent years, coffee producers have experienced a series of income losses due to 

market failures, pests and diseases, the depletion of resources, extreme weather events, and a 

changing climate (Avelino et al., 2015a; Tucker et al., 2010; Vega et al., 2003).  

In light of the recent shocks and changing biophysical factors, it is desirable to develop 

mechanisms to describe and quantify the impacts of these changes on land suitability for coffee 

production. Some authors used species distribution models to explore the climatic suitability for 

coffee at regional and worldwide levels (Bunn et al., 2015, 2014; Chemura et al., 2015; Ovalle-

Rivera et al., 2015). These models use coffee maps as presence data together with climate 

information to predict climatic suitability for coffee production. This approach assumes that 

climate is the only explanatory variable of coffee presence in a given location, and farmers' actions 

to improve biophysical conditions or the influences of legal and socioeconomic factors are mostly 

excluded. Others, like D'haeze et al. (2005), explored the soil suitability (under the same climate 

conditions) for Robusta coffee using the Automated Land Evaluation System software based on 

the Framework for Land Evaluation of FAO (1976). Both studies focus on only one aspect of the 

environment, yet the response of species to environmental conditions are better explained by 

combining soil, topographical and climatic variables. While soil and topography are broadly 

aligned to climate, in practice, different soil types, e.g. can be found under the same climatic 

conditions and vice versa  (Coudun et al., 2006; Franklin and Miller, 2009). Mighty (2015) and 

Nzeyimana et al. (2014) thus used multi-criteria analyses including climate, soil and landform 

variables in geographical information systems to evaluate land suitability for coffee in Jamaica 

and Rwanda, respectively. 

All of these studies either look at a variety of factors but exclude uncertainty, or include 

uncertainty in their assessment but focus only on either soil or climate as the determining factor 

for coffee suitability. To date, no land suitability evaluation system includes all relevant factors 

for coffee production as well as uncertainty and has the potential to be used by scientists as well 

as stakeholders in coffee production. We, therefore, present in this paper the first Bayesian 
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network model for the Agroecological Land Evaluation for Coffea arabica L. (ALECA) in Central 

America.          

2.2. Materials and Methods  

2.2.1. Study area 

The study area encompasses the region of Central America spanning latitudes from 7.21° to 

18.4°N and longitudes from 92.21 to 77.16°W, covering the countries of Guatemala, Belize, El 

Salvador, Honduras, Nicaragua, Costa Rica and Panama (Figure 1) 

 

Figure 1. Study area in Central America. Coffee areas are marked green2.   

The area experiences tropical to subtropical conditions with a strong influence from the 

Atlantic Ocean. Dry winters and wet summers characterize the regional climate, whereby 

Atlantic regions experience more rainfall and higher humidity (>80%) than Pacific ones (Taylor 

and Alfaro, 2005). Average variations in mean air during the year are minimal (<4 °C) and 

decrease from North to South, but may be larger locally due to changes in topography (Magaña 

                                                 
2 Guatemala: Ministerio de Agricultura y Ganadería, 2010. El Salvador: Ministerio de Agricultura y 

Ganadería, 2010. Honduras: Instituto Nacional de Conservación y Desarrollo Forestal, 2013. 

Nicaragua: Ministerio de Agricultura y Forestal, 2012. Costa Rica: Instituto del Café de Costa Rica, 

2013. Panamá: Instituto Nacional de Estadísticas y Censo, 2012. 
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et al., 1999; Taylor and Alfaro, 2005). Due to the low variability in temperature, precipitation is 

the climatically more important determinant (Taylor and Alfaro, 2005). Even under future climate 

scenarios, where temperatures are expected to increase by 3 to 4 °C, the projected decrease in 

precipitation and increase in precipitation variability is regarded as the major threat to the region 

(Giorgi, 2006; Karmalkar et al., 2011). 

Cultivation of Coffea arabica L. in Central America started in the 18th century in the Pacific 

region (Ukers, 1935). In some aspects, the cultivation systems differ little in the area (Samper, 

1999); most of the coffee is cultivated in agroforestry systems, where trees are planted in coffee 

plantations to generate goods and services to the coffee plants and farmers (Somarriba et al., 

2004), and 99% of coffee grown is Coffea arabica, with 1% Coffea canephora Pierre ex A. Froehner 

(Robusta) in Guatemala (USDA, 2015). Currently, nearly one million hectares are used for coffee 

production in Central America, generating 8 to 11% of the worldwide coffee supply (ICO, 2015). 

2.2.2. Model development 

2.2.2.1. Selection of variables 

We started with a literature review to identify the key agroecological variables influencing 

coffee cultivation. Generally, coffee plants are sensitive to climate, soil conditions and farming 

practices (Camargo, 2010; Wang et al., 2015), in the literature described by the variables altitude, 

mean annual temperature, mean annual maximal temperature, annual mean precipitation, dry 

season length, relative humidity, wind speed, pH in H2O, cation exchange capacity, soil organic 

carbon content,  bulk  density, soil texture, slope and aspect (Alégre, 1959; Descroix and Snoeck, 

2004; Silva et al., 2013). From this list, we excluded altitude for our model, which is typically used 

as a proxy to define optimal and suboptimal climatic conditions for coffee (Avelino et al., 2005; 

Vaast et al., 2008), but which is only a substitute for temperature, which we use directly, wind 

speed and relative humidity due to gaps in data and information about its influence on coffee 

suitability, mean annual maximum temperature due its high correlation to mean annual 

temperature (Pearson coefficient r=0.96 and p<0.00001), which we calculated for the region based 

on WorldClim data (Hijmans et al., 2005), and soil organic matter due to its only in- direct 

influence on coffee plants. With this variable selection, we are in line with other authors 

recommendations for agricultural land evaluation (McRae and Burnham, 1981; Sys et al., 1991) 

and coffee land evaluation (Descroix and Snoeck, 2004; Mighty, 2015; Nzeyimana et al., 2014).  

For the selected factors, we compiled their optimal, suboptimal and unsuitable levels for 

coffee production (Table 1). Mean annual temperatures of 18 to 21°C are thought to be ideal for 
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coffee production (Alégre 1959). Temperatures above this range hasten the ripening of the coffee 

berry flesh before complete bean maturity is reached and consequently, the coffee quality declines 

(Vaast et al., 2006). Also, plant growth is reduced, and vegetative abnormalities start to occur at 

too low or high temperature (Camargo, 1985 and Franco, 1958 cited by DaMatta and Ramalho, 

2006).  

Table 1. Agroecological variables selected to describe coffee land suitability in Central America 

with unsuitable, suboptimal and optimal values as reported in the literature. 

Component Variables Unit Unsuitable Suboptimal Optimal 

Climate 

Mean annual 

temperature 
°C ≤101,2, ≥303,6, >322 

<15-163, <17-

184 >233,4, >265 
18-213, 18-234 

Annual 

precipitation 
Mm <10007 

<13008,  

>30007,9 

1550-200010, 

1600-18003 

Dry season 

length 

# months ≤ 60 

mm 
>611 <212, 5-611 2-413,3-414 

Soil 

pH in H20 - <48, >88 
<5,  

>6.5 

5.5-6.59, 5.2-

6.214 

Cation 

exchange 

capacity 

Meq 100g-1  <515 >2215, 16 

Texture  Categorical 

Sand (>30%), 

heavy clay 

(clay>70%)12,13 

 
Loam, clay 

loam, clay 

Landform 

Slope % >509, >7017 >407 0-407 

Aspect 
Cardinal 

directions 
  East18 

1 Larcher (1981), 2 Jaramillo and Guzmán (1984), 3 Alégre (1959), 4(1985) cited by DaMatta and Ramalho 

(2006), 5Nunes et al. (1973) cited by DaMatta and Ramalho (2006), 6 DaMatta and Ramalho (2006), 7 

ANACAFE(2006), 8 Willson (1985), 9 Descroix and Wintgens (2004), 10Forestier (1969) cited by Willson (1985), 
11 Descroix and Snoeck (2004),  12 Maestri and Barros (1977), 13 Haarer (1958), 14Robinson 1964 cited by 

Willson (1985), 15 Molina and Melendez (2002), 16 Verheye (2002), 17 Blanco and Aguilar (2015), 18Avelino et 

al. (2005).   

For precipitation, Wallis (1963) estimated water requirements of 951 mm year-1, in practice, 

as much as 1500 to 2000 mm are desirable. Precipitation higher than 2500 mm year-1 can lead to 

waterlogging, a boost in fungal diseases, premature berry droppings, and ineffective fertilizer 

applications, amongst others (ANACAFE, 2006; Willson, 1985). Concerning the distribution of 

precipitation over the year, a dry season of 3e4 months is ideal to stimulate the main flowering 

and harvesting season in Central America. In regions closer to the equator, like Colombia, two 

short dry periods occur in a year facilitating two harvesting seasons. Longer dry seasons can lead 

to flowering and fruit abortions, and quality and yield decline (Cannell, 1985; Willson, 1985), 

which is why coffee farmers identified precipitation (droughts and excessive rainfall) as the 
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primary climatic concerns in the region, followed by temperature (Eakin et al., 2014; Tucker et al., 

2010). 

Soil texture affects multiple soil properties that influence soil fertility and crop productivity. 

Since coffee productivity is sensitive to nutrient and water supply, sandy and heavy clay soils are 

avoided for their limitations in water and nutrient holding capacity and drainage. The pH and 

cation exchange capacity are critical indicators of nutrient availability in the soil. Coffee plants 

prefer slight to medium acidic soils (5.0 to 6.2) with a high cation exchange capacity. Unlike soil 

texture, pH and cation exchange capacity can be modified by farming practices, such as chemical 

fertilization, the addition of organic matter, burnings, etc. (Descroix and Snoeck, 2004; Osman, 

2013). Slope defines the vulnerability of a site to erosion and determines the potential for 

mechanization. Thus, flat or low slopes are optimal, as steep slopes require major soil 

conservation practices and reduce the efficiency of farming practices (Descroix and Snoeck, 2004; 

Ramírez, 2009). The aspect influences temperature variations at microclimate level; in northern 

latitudes, south-facing slopes receive more sunlight that north-facing ones (Adams, 2010; Bonan, 

2008) and Avelino et al. (2005) found that coffee cultivated on east-facing slopes produced a better 

coffee quality in two locations in Costa Rica. Philpott et al. (2008) discovered significantly higher 

landslides in southwestern-facing slopes during a hurricane in Mexico. 

2.2.2.2. Suitability functions 

We created suitability functions, i.e. response curves, for the selected variables based on the 

agroecological requirements of coffee, and the literature listed in Table 1. We used two kinds of 

functions: tables for discrete variables (texture and aspect) and equations for continuous 

variables. To create the equations, we firstly defined the suitability scores for the variable values 

based on literature, secondly graphed the suitability scores for each variable and finally identified 

the functions that best fit to each graph (Figure 2). In the case of tabular suitability functions, for 

soil texture, we defined the suitability scores from literature. For aspect, we used a survey of 600 

coffee farms in Nicaragua (Nitlapan, 2012) to define the suitability of each cardinal direction by 

using an analysis of covariance, a mean separation test, and a weighted mean. 

In the case of wild species, these types of functions describe the relationship of a species’ 

occurrence in relation to values of an environmental condition (Austin, 1980; Franklin and Miller, 

2009). In our study, the suitability functions describe how suitable the value of a variable is for 

coffee production considering coffee’s ecology and agronomy aspects, ranging from 0 to 100% 

(Figure 2 and Table 2. Suitability functions of the selected agroecological variables. Suitability 

scores range from 0 to 100%. The values in the texture table denote that there is a probability of 
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99% that ‘Sand’ e.g. only has a suitability of 0 to 25% for coffee production, and a 1% probability 

that it is in the range of 25 to 50%. 

 

Figure 2. Graphical display of the suitability functions for continuous variables.  
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Table 2. Suitability functions of the selected agroecological variables. Suitability scores range from 

0 to 100%. The values in the texture table denote that there is a probability of 99% that ‘Sand’ e.g. 

only has a suitability of 0 to 25% for coffee production, and a 1% probability that it is in the range 

of 25 to 50%. 

Variables Equations 

Mean annual 

temperature 

𝑆𝑡𝑖 = 𝑇𝑖~𝑁(𝜇, 𝜎
2) ÷ 𝑇𝜇~(𝜇, 𝜎

2) ∙ 100 

Where 𝑆𝑡𝑖 is the suitability score for a given annual mean temperature in °C (𝑇𝑖) and is 

distributed normally with mean μ = Tμ=  20 and variance σ2 = 3.89 

Annual 

precipitation 

𝑆𝑝𝑖 = 

{
 
 

 
 

 
 0, 𝑖𝑓  𝑃𝑖 < 800;

𝑃𝑖~𝑁(𝜇, 𝜎
2) ÷  𝑃𝜇~ (𝜇, 𝜎

2) ∙ 100, 𝑖𝑓 𝑃𝑖 < 2300;

     90, 𝑖𝑓 𝑃𝑖  ≤ 3000;
60, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where 𝑆𝑝𝑖 is the suitability score for a given annual precipitation in mm (𝑃𝑖) and is 

distributed normally with mean 𝜇 = 𝑃𝜇=  2000 and 𝜎2 = 620.48 

Dry season 

length 

𝑆𝑑𝑖 = {
0,    𝑖𝑓  𝐷𝑖 > 8;                          

 
  
0.252𝐷𝑖

4 − 3.828𝐷𝑖
3 + 14.149𝐷𝑖

2 − 1.458𝐷𝑖 + 60,       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

Where 𝑆𝑑𝑖 is the suitability score for a given dry season length in months (𝐷𝑖) 

Slope  
𝑆𝑠𝑖  = 0.01 𝑆𝑖

2 − 2𝑆𝑖 + 100 

Where 𝑆𝑠𝑖 is the suitability score for a given slope in percentage (𝑆𝑖) 

Aspect  
𝑆𝑎𝑖 = 

{
 
 

 
 

 
80, 𝑖𝑓 𝐴 = 𝐹𝑙𝑎𝑡;                      90, 𝑖𝑓 𝐴 = 𝑊𝑒𝑠𝑡;           
72, 𝑖𝑓 𝐴 = 𝑆𝑜𝑢𝑡ℎ𝑒𝑎𝑠𝑡;           93, 𝑖𝑓 𝐴 = 𝑆𝑜𝑢𝑡ℎ𝑤𝑒𝑠𝑡;
80, 𝑖𝑓 𝐴 = 𝑁𝑜𝑟𝑡ℎ𝑒𝑎𝑠𝑡;         97, 𝑖𝑓 𝐴 = 𝑁𝑜𝑟𝑡ℎ𝑤𝑒𝑠𝑡;
80, 𝑖𝑓𝐴 = 𝐸𝑎𝑠𝑡;                     100, 𝑖𝑓 𝐴 = 𝑆𝑜𝑢𝑡ℎ;           
87, 𝑖𝑓𝐴 = 𝑁𝑜𝑟𝑡ℎ;                                                               

 

Where 𝑆𝑎𝑖 is the suitability score for a given slope aspect (𝐴) 

pH (H20) 

𝑆𝑝𝐻𝑖 = 𝑝𝐻𝑖~𝑁(𝜇, 𝜎
2) ÷ 𝑝𝐻𝜇~(𝜇, 𝜎

2) ∙ 100 

Where 𝑆𝑝𝐻𝑖 is the suitability score for a given pH (𝑝𝐻𝑖) and is distributed normally with 

mean 𝜇 = 𝑝𝐻𝜇= 5.5 and 𝜎2 = 0.79 

Cation 

exchange 

capacity 

 𝑆𝑐𝑒𝑐𝑖 = {

0,   𝑖𝑓 𝐶𝐸𝐶𝑖  < 1                        
100,    𝑖𝑓  𝐶𝐸𝐶𝑖 ≥ 22                          

−0.061𝐶𝐸𝐶𝑖
2 + 6.114𝐶𝐸𝐶𝑖 − 5.053,       𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

Where 𝑆𝑐𝑒𝑐𝑖 is the suitability score for a given cation exchange capacity in meq/100g (𝐶𝐸𝐶𝑖) 

Texture 
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Where 𝑆𝑡𝑖 is the suitability score for a given soil texture (𝑇𝑖) 

2.2.2.3. Modeling in Bayesian Networks  

Bayesian Networks are multivariate statistical models that comprise two main components: 

First, a directed acyclic graph composed of a set of random variables X = (X1, [...], Xn) linked by 

arcs, where the arc direction defines direct dependencies between variables (parent and child 

Texture 
Suitability (%) 

0 to 25 25 to 50 50 to 75 75 to 90 90 to 100 

Sand 99 1 0 0 0 

Sandy loam 99 1 0 0 0 

Loamy sand 0 99 1 0 0 

Loam 0 0 1 99 0 

Silt loam 0 0 1 99 0 

Silt 0 1 99 0 0 

Sandy clay loam 0 1 99 0 0 

Clay loam 0 0 1 99 0 

Silty clay loam 0 0 1 99 0 

Sandy clay 0 1 99 0 0 

Silty clay 0 0 0 1 99 

Clay 0 0 0 1 99 
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nodes). Each variable has at least two mutually exclusive states. Second, a conditional probability 

distribution (conditional probability table) that quantifies the dependencies between variables. 

To illustrate, assume that X1 is the child variable of parent variables X2, […], Xn, written as P(X1 | 

X2, [...], Xn), which expresses the probability of X1 occurring given the values of X2, [...], Xn  

(Jensen and Nielsen, 2007b; Pearl, 1988). In our case, the combination of agroecological variables 

determines the level of suitability of a given piece of land for coffee cultivation. In a Bayesian 

network framework, this implies direct causal links be- tween each variable and the variable land 

suitability, i.e. p(Land Suitability | variable1, [...], variablen). These multiple links create an 

exponential increment of model complexity due to the need to estimate the probability 

distributions for all possible combinations of the states of the agroecological variables (Landuyt 

et al., 2013). We avoided this complexity and at the same time increased the explanatory ability 

of the model by adding two intermediate levels (the S-variables and components) between each 

agroecological variable and the land suitability. This technique is known as divorce in graphical 

models and is commonly used to keep conditional probability tables tractable (Chen and Pollino, 

2012; Jensen and Nielsen, 2007a). We built our model using the software Netica v.5.17 (Norsys 

Software Corp.). 

The final graphical model (Figure 3) displays three evaluation levels: variables, components 

(groups of variables), and final land suitability (groups of components). The model scores and 

aggregates the suitability of the agroecological variables in each level to obtain the final land 

suitability, which we defined as the potential of a given unit of land to be used for viable coffee 

cultivation. In the first level, we created a node with discretized states for each variable and 

defined the maximum and minimum values of the variables (Pollino et al., 2007) and the priors 

from data available for the region (Figure 3) (Hengl et al., 2014; Hijmans et al., 2005). Then, we 

added a new child variable “S” to each agroecological variable and used the suitability functions 

to populate the conditional probability tables of the S-variables. In the second level, we grouped 

and aggregated the S-variables into the components climate, soil, and landform by using the 

Linear Combination Method (Hopkins, 2014). This method is a simple weighted sum of factors. 

We assigned the same weight to all S-variables. In the third level, we again used the weighted 

sum method to aggregate the components into the final variable Land Suitability, but this time 

assigned different weights to each component (49% to climate, 36% to soil and 15% to landform). 

The weights were calculated based on two coffee survey from Nicaragua (Lara-Estrada, 2005; 

Nitlapan, 2012) using Pearson's correlation coefficients between our selected variables and the 

coffee yields reported in the surveys. 



29 

 

After the structure of the model was determined, the priors of the agroecological variables 

were learned from data using the Counting-Learning Algorithm (Norsys, 2015) and the 

conditional probability tables of all child-nodes were populated using the described equations 

and weighted sums. Then the model was compiled and ready to use. An online version of the 

model is available at the following link: 

https://www.hed.cc/?s=ALECA&t=ALECA 

 

 

Figure 3. Graphical structure of the Agroecological Land Evaluation model for Coffea arabica L. 

(ALECA). Arrows indicate causal relationships between variables (from parent to child nodes). 

Level 1 (white boxes): suitability functions [0-100%] are used in the “S” nodes to evaluate the 

suitability levels of the agroecological variables for coffee cultivation. Level 2 (gray boxes): the 

suitability scores of Level 1 are aggregated into components. Level 3 (green box): the components 

are aggregated and weighted to obtain the final land suitability score. The units of the S variables, 

the components and the final land suitability score are percent. 

 

 

 

 

 

 

 

 

 

 

https://www.hed.cc/?s=ALECA&t=ALECA
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Table 3. Description of the state values for the selected variables. 

2.2.3. Data sources 

For the simulations, we used the WorldClim dataset (Hijmans et al., 2005) to extract 

precipitation and temperature and calculate dry season length. WorldClim provides climate data 

in raster format from interpolated observations for the period 1950 to 2000 and also includes 

digital elevation [90 m aggregated at 1 km] from the Shuttle Radar Topography Mission (SRTM). 

We used this data to estimate the slopes and aspect [0 to 3600], which was converted to cardinal 

directions (ESRI, 2008). Sand, silt and clay content, cation exchange capacity and pH in H2O were 

downloaded from the SoilGrids portal (www.soilgrids.org). SoilGrids is a worldwide 3D spatial 

dataset for chemical and soil physical properties at 1 km resolution (Hengl et al., 2014). Soil data 

were available from 0 to 200 cm depth in layers of 5 cm; we used the average of the layers between 

0 at 30 cm depth. Lastly, we merged all climate, landform and soil data into a single dataset, 

where each pixel [1 km resolution] corresponds to one “land case” to be evaluated in the model. 

 

 

 

Variables States* 

Level 1  

Annual mean temperature [°C]  4-9.99, 10-11.99, [...], 26-27.99, 28-29.99 

Annual precipitation [mm]  500-999.99, 1000-1249.99, [...], 2750-2999.99, 3000-6499.99 

Dry season length [months] 0, 1, 2, 3, 4, 5, 6, 7, 8  

Slope [%] 0-1.99, 2-3.99, [...], 16-29.99, 30-59.99, 60-99.99 

Aspect [cardinal direction] 
North, Northeast, East, Southeast, South, Southwest, West, 

Northwest, Flat 

pH in H20 [-] 2-2.49, 2.5-2.99, 3-3.49,[...], 7-7.49, 7.5-7.99 

Cation exchange capacity [Meq 100 g-1] 2.5-4.99, 5-7.49, [...], 17.5-19.99, 20-22.49, ≥22.5 

Texture [categorical] 

Sand, Loamy sand, Sandy loam, loam, Silt loam, Silt, Sandy 

clay loam, Clay loam, Silty clay loam, Sandy clay, Silty clay, 

Clay 

S variables [%]: 

Annual mean temperature, Annual 

precipitation, Dry season length, Slope, 

pH in H20, Cation exchange capacity   

0-9.99, 10-19.99, [...], 80-89.99, 90-99.99 

S variable Aspect [%] 70-79.99, 80-89.99, 90-99.99 

S variable Texture [%] 0-24.99, 25-49.99, 50-74.99, 75-89.99, 90-99.99 

Level 2  

Component suitability [%]:  

Climate, Landform and Soil 
0-9.99, 10-19.99, [...], 70-79.99, 90-99.99 

Level 3  

Land Suitability [%] 0-9.99, 10-19.99, [...], 70-79.99, 90-99.99 
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2.3. Sensitivity analysis 

The influence of a parent variable on a child variable is defined by the prior distribution, the 

variable states (i.e. size and bounds) and the equations or conditional probability tables inside the 

child variable (Bennett et al., 2013). To explore the influence of the chosen agroecological variables 

on land suitability, we ran a sensitivity analysis using the variance reduction metric. The higher 

the variance reduction value of a variable is (scoring from 0 to 100%), the greater its influence on 

land suitability (Marcot et al., 2006; Norsys, 2015). We also examined the influence of the single 

components’ scores on land suitability. 

The analysis shows that the components climate and soil and their respective agroecological 

variables (except texture) influence land suitability most, and that results are not very sensitive 

to the landform component. Inside the components, mean temperature plays the most important 

role in the climate, pH in the soil and slope in the landform component (Figure 6). The low 

variance reduction of landform results a) from the low weight derived for the landform 

component, and b) from the narrow distribution of slope and aspect in our gridded input dataset, 

where, due to the resolution, extremes in slope, which would restrict or prohibit coffee cultivation 

on some plots, are filtered out. Since ALECA was also developed to be applied to specific plots 

on farms, this may not always be the case. Steep slopes facilitate soil erosion and hinder the 

efficiency of agronomic practices (Okoth et al., 2007; Tilman et al., 2002), which is why a flat or 

low slope is more desirable on a piece of land with excellent or good conditions of soil and climate 

(land suitability > 85%) than a steep slope and will be better ranked. For an explanation of how 

to the components’ scores interact to define the final land suitability, see Figure A1. 

 

Figure 4. Sensitivity analysis of model results using variance reduction for land suitability (left) 

and components (right). CEC: cation exchange capacity, DS: dry season length, PA: mean annual 

precipitation, TA: mean annual temperature. 

Components
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2.4. Model validation 

Validating a model like ALECA is difficult due to the nature of its results, which do not give 

data on the presence/absence of coffee, but provide a score of 0-100% indicating the suitability of 

a specific land unit for coffee cultivation. We nevertheless decided to compare our model results 

with regional data of the spatial distribution of coffee areas (Figure 1), assuming that the 

distribution of current coffee areas is the result of a historical and technical selection for the best 

possible and available areas (Rueda and Lambin, 2013; Samper, 1999), and that consequently 

ALECA should score their land units high on the suitability scale. Some plantations may be 

located in areas of lower suitability since farming practices like the planting of shade trees 

improve land suitability by lowering temperatures (Haggar et al., 2011; Siles et al., 2010), but no 

coffee plantations should be located on completely unsuitable areas. 

The results of this exercise show that there is indeed a close fit between patterns of coffee 

areas reported in national coffee maps and areas scored as suitable for coffee production by our 

model (Figure 5; maps of the entire region from Figure A2 to Figure A5). Areas with coffee 

plantations have a mean land suitability score of 85% (SD=5.34), nearly 98% of the plantations are 

located in areas with a suitability higher 70%, only 2% of the areas are ranked 60 to 70%, and no 

coffee plantations have land suitability scores below 60% (Figure 5). 
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Figure 5. Map of reported coffee areas and simulated land suitability scores in selected areas of 

Central America. Coffee is usually grown in areas with a high estimated suitability, indicating a 

good model performance. Pixel size is 1 km. 
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Table 4. Simulated land suitability scores of current coffee and non-coffee areas for Coffea arabica 

L. in Central America with GUA=Guatemala, HON=Honduras, ESV=El Salvador, 

NIC=Nicaragua, CR=Costa Rica, PAN=Panamá. A graphical presentation of the data can be found 

in the supplementary material. 

Land suitability 

score (%) 

 Coffee areas  Non-coffee areas 

 GUA HON ESV NIC CR PAN ∑ % ∑ km2  % km2 

<60  <0.01 <0.01 - - <0.01 - <0.01 <1  3.20 15,776 

60 - 69  1.90 0.06 <0.01 0.09 0.06 - 2.11 224  17.34 85,469 

70 - 79  18.25 2.62 0.96 1.56 0.99 0.30 24.68 2,614  44.75 220,678 

80 - 89  14.99 17.33 11.88 11.15 3.66 0.46 59.47 6,302  32.75 161,489 

90 - 100  2.08 2.99 1.82 2.49 4.26 0.10 13.74 1,456  1.96 9,677 

Total  37.22 23.00 14.66 15.29 8.97 0.87 100 10,598  100 493,089 

 

In comparison, non-coffee areas have a mean land suitability score of 76% (SD=7.70), with 80% 

located in areas with a suitability higher 70%, 17% in areas ranked 60 to 70%, and 3% in areas 

with suitability scores below 60%. We assume that the occurrence of coffee plantations in areas 

ranked 60 to 70% is the result of social and agronomical factors, such as planting coffee for land 

reclamation purposes (Charlip, 2003). Additionally, the use of farming practices like agroforestry 

systems and better adapted genetic material have permitted farmers to extend coffee production 

to sites with a lower suitability ranking (Lashermes et al., 2009; Lopez-Rodriguez et al., 2015; 

Muschler, 2001). Guatemala, for example, the country with the highest proportion (54%) of coffee 

areas rated between 60 and 80% suitability, is also the only country in Central America with a 

significant Robusta production (Coffea canephora Pierre ex A. Froehner). This coffee specie is better 

adapted to warmer conditions than Coffea arabica L. (USDA, 2015; Willson, 1985), indicating that 

the simulated lower suitability scores may be realistic. The relatively high proportion of non-

coffee areas with scores higher 70% shows that there is a great expansion potential in Central 

America for coffee production. It should be kept in mind, however, that non-coffee areas include 

urban and protected areas, coasts, roads, and other land uses that are not immediately available 

for plantations. We conclude from this validation study that, taking local social and agronomical 

factors into account, ALECA performs well in terms of land suitability scoring of potential coffee 

areas. 

In a second validation study, we compared the simulated land suitability scores of eight coffee 

reference zones with their conventionally reported suitability for coffee cultivation, hoping to 

show that ALECA simulates higher scores for prime coffee areas than for areas known to be of 

lesser suitability. The selected zones are located in Honduras, Nicaragua and Costa Rica and 

include the zones Marcala and El Paraíso in Honduras (Teuber, 2009), Jinotega, Masatepe and 
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Nueva Guinea in Nicaragua (Haggar et al., 2011; Vaast et al., 2004), and Tarrazú, Turrialba and 

San Carlos in Costa Rica (Muschler, 2001; Siles et al., 2010). According to the literature and 

commonly held views, the region Tarrazú is considered as optimal, Jinotega and Marcala as very 

good, and Turrialba, Masapete, El Paraíso, Nueva Guinea and San Carlos as suboptimal for coffee 

production (Haggar et al., 2011; Muschler, 2001; Rojas, 1989; Vaast et al., 2005).  

We found that Tarrazú, the only region ranked optimal, was also the region simulated to have 

the highest mean land suitability- scores among the reference zones.  The determining factors 

for the high score were mainly climate and soil conditions (Figure 6), which is line with the 

assessments of other authors for Tarrazú (Bornemisza and Segura, 1999; Chinchilla et al., 2011; 

Rojas, 1989). Next in the land suitability ranking were Jinotega and Marcala, both also known in 

reality for their overall good production levels and coffee quality (IICA, 2003; Teuber, 2009). 

Jinotega scored slightly worse in the soil compartment and Marcala in the climate compartment 

than Tarrazú. Turrialba, Masatepe, and El Paraíso received suitability scores of 80 to 89% due to 

several limitations in climate, soil, and landform, with Turrialba having a better climate, and 

Masatepe better soil and landform conditions (cf. Haggar et al., 2011). Finally, even though Nueva 

Guinea showed the best landform conditions, non-optimal values in mean temperature and soil 

chemical properties resulted in a land suitability score of 73%, only above of San Carlos. 

 

Figure 6. Overall land suitability and single component suitability scores of the coffee reference 

zones in Central America. In the land suitability figure, the colors black (optimal), grey (very 

good) and white (suboptimal) indicate the commonly accepted classifications of the reference 

zones. Honduras: EPA=El Paraíso, MAR=Marcala; Nicaragua: NGU=Nueva Guinea, 

MAS=Masatepe, JIN=Jinotega; Costa Rica: SCA=San Carlos, TUR=Turrialba, TAR=Tarrazú. 
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Errors bars represent the standard deviation of the mean. Different letters inside bars indicate 

significant difference between reference zones (ANOVA by Fischer test; p<0.01). 

This analysis shows that ALECA is not only able to assign high suitability scores to actual coffee 

areas in Central America as shown in the previous validation study, but also to reproduce 

reported quality patterns between single coffee areas. Figure 6 also shows that looking at the 

different component suitability scores instead of only the final land suitability score can help to 

under- stand the reasons behind the final ranking and facilitate a better decision support. 

Based on the results of this validation study, we propose that land suitability scores above 90% 

can be categorized as optimal (cf. Tarrazú), 90 to 85% as very good (cf. Marcala and Jinotega), 84 

to 75% as moderate (cf. El Paraíso, Masatepe, Turrialba), 74 to 60% as subopti- mal (cf. San Carlos 

and Nueva Guinea) and values below 60% as unsuitable for coffee production. 

2.5. Application example using uncertain information 

One of the main motivations for developing ALECA was that the Bayesian network 

approach allows users to consider data uncertainty. Users may have precise information for some 

variables and incomplete information for others, or may simply want to consider the inherent 

uncertainty of some input data, like e.g. soil sampling deviations or errors in rainfall 

measurements. To demonstrate ALECA's ability to deal with this issue and still deliver reliable 

results, we conducted a simulation using input data with added un- certainty and compared the 

results to simulations without uncertainty in the input data. We assumed that farmers can easily 

measure slope, soil texture, and dry season length and thus have precise information (hard 

evidence) for these factors. For the remaining variables, we used Netica's Uncertain Value 

Format, which allows users to represent different types of data uncertainty by using Gaussian 

distributions, intervals, a set of (im)possibilities and others (Norsys, 2015).  In this case, we used 

the Gaussian uncertain value format to calculate a mean and standard deviation for each case 

value based on the input data for each land case and the state values of each agroecological 

variable (Table 3). We then ran the model with both input datasets, thus estimating land 

suitability scores with and without uncertainty in the input data, and finally calculated for both 

result datasets in order to evaluate model performance the Bayesian metrics quadratic loss and 

spherical payoff, and the conventional metrics bias, RMSE, and Index of Agreement (Marcot, 

2012; Willmott, 1981). 

Results show that the mean land suitability-scores were approximately the same, with 

76.13% and an SD=4.88 calculated from the input dataset with added uncertainty and 76.29% with 

an SD= 7.7 from the original dataset (Figure 7). The use of data with uncertainty generated a land 
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suitability score distribution with shorter tails, however. This finding indicates that in areas with 

land suitability scores ranged 60 to 90%, ALECA's performance is quite accurate even under 

uncertainty, but that  in regions with low(<60%) or high suitability scores (>90%) results differ 

by ca. 5% between data  with and without uncertainty. This difference is negligible in our case, 

as the qualitative ranking of areas does not change with a difference of 5%: areas with suitability 

values below 60% are unsuitable for coffee production in any case, and areas with values above 

90% will remain optimal or very good. 

Overall, the study shows that in the suitability range most coffee areas are in Central 

America are found in, ALECA can deliver a reliable analysis even under uncertainty and can thus 

be used as a decision support tool even in situations where data is missing or uncertain. 

 

 

Figure 7. Land suitability (LS) scores simulated from input data with and without added 

uncertainty.  A) Dispersion graph of LS scores. A bias (ca. 5%) is visible between datasets at low 

and high LS values. B) Box plot of the same values as shown in A). The classes on the x-axis only 

apply to the white boxes (input data without uncertainty). The grey boxes show the LS scores of 

the same land units, but with added uncertainty in the input data. C) Two maps of a randomly 

chosen coffee zone in Nicaragua. 
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2.6. Discussion 

Bayesian networks are versatile tools for the creation of land suitability evaluation systems 

for coffee production. Unlike other land suitability evaluation systems (Bunn et al., 2014), models 

like ALECA have a transparent and informative graphical interface that allows users to evaluate 

the suitability of a given land unit for coffee cultivation at variable, component and aggregate 

level. Decision makers can see, explore and learn from the evaluation process (Jakeman et al., 

2006; Ranatunga et al., 2008). Like Mighty (2015) and Nzeyimana et al. (2014), we used climate, 

soil and  topography variables to define land suitability. The main difference between their 

variable selection and ours is that they used proxy variables like soil orders and geological 

information to represent the effect of soil properties in some cases, while we focused on variables 

with a direct influence on land suitability (Austin, 2002). Finally, the combined deterministic and 

probabilistic updating in ALECA allows the model to produce quick and accurate results by 

using i) deterministic updating when there is no uncertainty in the evidence for the parent 

variable(s) and no uncertainty in the equation or tables relating the child variable to its parent(s), 

and ii) probabilistic updating when uncertainty is present from any of those sources (B. Boerlage, 

Norsys Software Corp.; personal communication). 

Some caveats should be kept in mind, however. First, we had to use data from different types 

of studies (surveys and trials), regions and conditions to develop the suitability functions, but 

assumed that the information appropriately represents the process under study (Rodríguez et al., 

2011; van Oijen et al., 2010). Second, the literature largely refers to only Coffea arabica L. and 

ignores varietal differences (Bertrand et al., 2011; Lashermes et al., 2009). Thus, we also excluded 

varietal differences from our model. Third, there is uncertainty associated with the datasets we 

used that we did not consider in the validation procedure for the sake of clarity. We opted to 

demonstrate how this factor can be considered in the uncertainty exercise instead. Finally, like 

other land evaluation systems, ALECA uses a linear combination method to estimate land 

suitability, which is a weighted sum of individual variables’ suitability that excludes any 

interactions and assumes variable independence (Hopkins, 2014). However, the influence of some 

variables can depend on the state of other variables. Medium to low amounts of annual 

precipitation, for example, have less of an impact on coffee when soil texture is clayey (Willson, 

1985) and slope aspect modifies the temperature at the site level (Barry, 2008). Including these 

interactions would have required defining all conditional dependencies  between the states of 

the different variables, which was not feasible due to lack of information. The model validation 
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exercise showed that ALECA performs well even without considering these interactions, but we 

will nevertheless keep refining the model with any new data set that becomes available. 

Plans for ALECA also include the addition of variables describing the impact of farming 

practices like mulching on soil properties and erosion reduction, irrigation on water supply and 

the planting of trees on microclimate and soil conditions. The shade of trees, for example, reduces 

the temperature under the canopy in agroforestry coffee plantations (Siles et al., 2010). By 

defining the potential of temperature reduction based on the level of shade, it is easily possible 

to explore changes in temperature suitability due to trees in ALECA. ALECA can also be adapted 

for use in coffee regions outside Central America by updating the bounds and priors of the 

variables to the new conditions. For the regions that experience lower annual or seasonal 

temperatures than Central America, the introduction of a variable like ‘temperature of the coldest 

month’ may be necessary (Woodward and Williams, 1987), but no further changes to the structure 

would likely be needed. 

2.7. Conclusions 

In this study, we introduce ALECA, the first Bayesian network model to evaluate land 

suitability for coffee production in Central America under uncertainty. The validation showed 

that even without the use of coffee maps as input, ALECA reliably scored the suitability of actual 

coffee areas for coffee production as higher than that non-coffee areas, and was able to accurately 

predict the known order of quality of several coffee reference zones in Central America. We 

further showed that the model can also be used as a reliable decision support tool for coffee 

stakeholders in situations where some input data is uncertain. The graphical structure of the 

model permits users to easily assess the main factors determining land suitability for coffee 

production, to explore how changes in these factors   impact suitability, and to plan adaptation 

measures accordingly. 
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2.8. Appendices II 

Appendix II-A. Influence of single components on final land suitability scoring  

 

Figure A1. Suitability scores of single components and final land suitability score of coffee areas 

in Central America. The climate and soil components have a larger influence on the final land 

suitability score than landform. To achieve high or low land suitability scores, both climate and 

soil components need to have high or low values, indicating that no further analysis of causes is 

required. Intermediate land suitability values (60 to 80%) can arise from diverse component 

values, in which case the single component and variable values need to analyzed in order to 

identify the limiting factors for coffee production. 

Appendix II-B. Suitability maps for Coffea arabica L. 

 

Figure A2. Map of current land suitability for Coffea arabica L. in Central America 
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Figure A3. Map of current climate suitability for Coffea arabica L. in Central America 

 

Figure A4. Map of current soil suitability for Coffea arabica L. in Central America 
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Figure A5. Map of current landform suitability for Coffea arabica L. in Central America 

 

Appendix C. Distribution of coffee and non-coffee areas’ land suitability in Central 

America 

 

Figure A6. Simulated share of total coffee and non-coffee area in Central America in the different 

land suitability classes for coffee production. 
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Figure A7. Simulated share of total coffee area in the countries Guatemala, Honduras, El 

Salvador, Nicaragua, Costa Rica and Panama in the different land suitability classes for coffee 

production. 
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3. CHANGES IN THE LAND SUITABILITY FOR     

Coffea arabica L. DUE TO CLIMATE CHANGE IN 

CENTRAL AMERICA 

3.1. Introduction 

In the last two decades, the coffee sector in Central America has experienced a drop in prices 

and coffee rust outbreaks; crises that have provoked a progressive diminishing of the 

sustainability of coffee production (Avelino et al., 2015a; CEPAL, 2002; PROMECAFE, 2018). 

Given the projections of drier and warmer conditions in the Northern, and wetter conditions in 

the Southern areas of the region under climate change (Hidalgo et al., 2017), a change in the 

climate suitability for coffee [Coffea arabica L.] is expected. Climate change may thus not only 

represent a new challenge, but even exacerbate existing ones, making it even more difficult 

sustain coffee production (Eakin et al., 2005; Frank et al., 2011).  

Contrary to its wild relatives, coffee have been bred and selected for specific purposes, such 

as increase productivity, quality, or resistance to pests and diseases. As a cultivated plant, the 

coffee production requires farm planning and reach productive standards that merely survive 

and reproduce as occurred with coffee wild plants (Miller and Gross, 2011). So, production 

systems have been evolved to accomplish such productive purposes (Bertrand et al., 2011; 

Lashermes et al., 2009; Montagnon et al., 2012), existent land features [agroecological conditions: 

climate, soil, landforms], and farmers’ socioeconomic conditions (Sys et al., 1991; Young, 1987). 

According to some authors the climate, soil, and landforms are responsible for about the 48, 36 

and 15% of the land suitability for coffee production, respectively (Lara-Estrada et al., 2017; 

Mighty, 2015); which is in line with the accepted perception that coffee is sensitive to climate and 

mineral fertilization (Gay et al., 2006; Meylan et al., 2013). So, information over the land suitability 

for coffee will give farmers and agronomists better insights of the limitations that coffee 

cultivation will face in a particular piece of land and help to define farm planning that includes 

practices to overcome or alleviate such land’s limitations; farming practices like the use of shade 

trees, soil management, adapted coffee varieties are some of them..  

Previous studies had addressed the climate change effects only over the climate suitability 

for coffee using species distribution models (Bunn et al., 2014; Ovalle-Rivera et al., 2015) that 

initially were developed and used to study the dispersion patterns of wild species based on 

presence-only data (Guillera-Arroita et al., 2014; Phillips et al., 2006; Yackulic et al., 2013). Their 
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results indicate losses about 50% of climate suitability for coffee in the region and suggest as a 

possible measure of action to move the current coffee areas upward to overcome the climate 

change alteration without considering other agroecological factors like soils or landforms. These 

studies were useful to give a first impression and raise awareness in the coffee community and 

consumers of the possible impacts. However, for planning purposes, an agronomical based 

approach is required; land suitability evaluations serve to this purpose by assessing the most 

critical agroecological factors that define the land potential to produce coffee. Including soil and 

landform together with climate variables offers a better description of the land to farmers, 

agronomist, and others decision makers during planning process than only consider climate 

(FAO, 1976; McRae and Burnham, 1981; Mighty, 2015; Nzeyimana et al., 2014). In this sense, the 

Bayesian network model for Agroecological Land Evaluation for Coffea arabica L. [ALECA] can 

evaluate the land suitability considering climate, soil, and landforms information (Lara-Estrada 

et al., 2017). ALECA was developed based on parameters reported in the coffee literature and 

empirical data. The model has been used to evaluate the current conditions for coffee production 

in Central America (Lara-Estrada et al., 2017). Hence, we used the model to evaluate the impact 

of climate change over the land suitability of coffee areas in Central America and address the use 

of the land suitability information for agricultural planning.  

3.2. Methods 

Our study area corresponds to the Central America region focusing on the current coffee 

areas. The model ALECA evaluates the land suitability using climate, soil and landform data: 

annual mean temperature [°C], annual precipitation [mm], dry season length [months], slope [%], 

aspect [cardinal direction], pH in H20, cation exchange capacity [Meq 100 g-1] and texture 

[categorical]. Given the unalterable nature of some of the variables [aspect, slope, and texture] or 

possible modifications using farming practices over others [CEC and pH], the soil and landform 

variables were assumed as unchanged; therefore, the dataset for current conditions [the reference 

year 2000] were used as well under climate change conditions. For details over the data, see 

section 2.2.2.3 (Hengl et al., 2014; Hijmans et al., 2005). In case of climate variables, the data from 

the model MPI-ESM-LR [ECHAM5] of the Max Planck Institute for the scenarios RCP 2.6, 4.5 and 

8.5 for 2050 and 2080 were used (Jungclaus et al., 2006; Ramírez and Jarvis, 2008). The data were 

downloaded at 30 seconds resolution [~ 1 km] (Ramirez-Villegas and Jarvis, 2010) from the 

CCAFS GCM DATA PORTAL [http://www.ccafs-climate.org]. The MPI-ESM-LR was chosen 

because it performed as one of the best GCM modeling current conditions for the study region 

(Fuentes-Franco et al., 2015; Maloney et al., 2013; Schaller et al., 2011), and even better 
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performance than the average value of others 20 climate models (Conde, 2011; Khatun et al., 

2013).  

Once the dataset was completed, the land suitability was inferred for coffee and non-coffee 

areas under the CC scenarios, where LS scores go from 0 to 100 %, where 100% is the highest 

optimal value. Also, a categorical land suitability scale was used to present the results: unsuitable 

= less than 60%, marginal = 60 to 75%, moderate = 75 to 85%, good = 85 to 90%, excellent = 90 to 

100% (Lara-Estrada et al., 2017). The percentage and rate of change of LS between current and 

climate change scenarios for the coffee areas were estimated. The rate of change was estimated 

according to the FAO’s equation used to calculate the annual rate of change [Rc] of forest to others 

land use by comparing the land use of a given area under two period [years] (Puyravaud, 2003; 

Velázquez et al., 2002). In our case, the equation depicts the Rc of coffee areas’ land suitability 

between current conditions [2000] and climate change scenarios (2050 and 2080).   

𝑅𝑐 = [
𝐴2
𝐴1
]
1 𝑛⁄

− 1 

Where the A2 and A1 are the areas [km2] with a given LS-score, the n is the number of years 

between the two periods under comparison. 

The LS-values for seven reference coffee zones we extracted and LS-changes calculated. The 

zones were used by Lara-Estrada et al. (2017) to validate ALECA and correspond to El Paraíso, 

Márcala [Honduras], Nueva Guinea, Masatepe, Jinotega [Nicaragua], San Carlos, Turrialba, and 

Tarrazú [Costa Rica]. 

  Finally, we discuss the use of land suitability information to define adaptation strategies 

during farm planning.   

3.3. Results and discussion 

3.3.1. Regional coffee areas 

The land suitability [LS] of current coffee areas decreased under the climate change scenarios 

in Central America. The areas under moderate and marginal-LS will increase at the expense of 

excellent and good ones (Figure 8 and Figure 9). There are no previous studies that approach the 

impact of climate change on the LS, so comparing our results to others studies was not possible. 

In the case of studies that reported climate suitability scores under CC, they are not comparable 

to our land suitability scores because the LS-scores integrate the suitability scores of the soil, 

landform and climate variables existing in the land under evaluation. The current land suitability 
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scores of the soil, landform and climate conditions are available in Lara-Estrada et al. (2017), 

Chapter 2. Here we focus on the impact of climate change on the future land suitability.  

  

Figure 8. Current and future land suitability of coffee areas (Coffea arabica L.) under three scenarios 

of climate change in Central America. Land suitability score: unsuitable= less than 60%, 

marginal=60 to 75%, moderate=75 to 85%, good=85 to 90%, excellent=90 to 100%.  

The results depict the evaluation of the environmental conditions; hence, the effect of the 

farming practices that already are implemented by farmers to improve the land suitability for 

coffee production are excluded. Some of these farming practices widely used in the region are the 

inclusion of shade trees in the coffee plantation to improve the microclimate and soil conditions 

[agroforestry], and soil conservation practices. These kinds of farming practices add layers of soil 

or climate suitability to the preexisting land conditions making possible the cultivation and 

occurrence of coffee areas under less suitable conditions; which in part explains the presence of 

an important portion of coffee areas under marginal LS. In Chapters 5, 6 and 7 we address the 

use of shade trees and its impact on the land suitability and coffee systems. 
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Figure 9. Current and future land suitability for Coffea arabica L. under three scenarios of climate 

change in Central America. Pixel size = 1 km. Land suitability score: unsuitable= less than 60%, 

marginal=60 to 75%, moderate=75 to 85%, good=85 to 90%, excellent=90 to 100%. 
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Since the data of soil and landform component were ceteris paribus under current and future 

conditions in this study, the observed changes in land suitability correspond to the effect of the 

alterations in the climate suitability. Here, coffee areas with marginal or moderate soil and 

landform suitability will lose more land suitability due to a downgrade in climate suitability than 

coffee areas with good or excellent soil or landform conditions [see 3.3.2]. From the three variables 

used to estimate the climate suitability, on average, the mean air temperature depicts the highest 

variations in suitability for coffee [scoring from -10.24 to 12.37%] among years and scenarios, then 

the annual precipitation [from -0.36 to -3.10%] and dry season length [from 0.05 to 0.32%]. 

However, if we observe the coefficient of variation, and the minimum and maximum values of 

the suitability scores for each variable, we can anticipate that some areas will suffer higher 

alterations in their suitability than others (Table 5). Therefore, next, we explore such dynamic of 

change in the land suitability.   

Table 5. Descriptive statistic of the suitability scores for coffee of the variables mean air 

temperature, annual precipitation and dry season length under climate change in coffee areas in 

Central America. 

RCP Year Variables LS variation (%) SD CV Min Max 

RCP2.6 

2050 

Mean Temperature -10.24 11.31 110.43 -53.73 71.04 

Annual Precipitation -0.36 10.23 2846.69 -34.75 49.57 

Dry Season Length 0.32 7.10 2234.46 -40.04 40.04 

2080 

Mean Temperature -9.34 10.73 114.95 -53.73 70.15 

Annual Precipitation -1.50 8.05 538.38 -38.19 44.84 

Dry Season Length 0.39 8.36 2163.63 -40.04 40.04 

RCP4.5 

2050 

Mean Temperature -10.35 11.32 109.44 -53.73 56.24 

Annual Precipitation -3.10 8.01 258.54 -39.28 32.12 

Dry Season Length -0.55 7.43 1346.84 -40.04 40.04 

2080 

Mean Temperature -12.37 12.73 102.93 -57.76 72.66 

Annual Precipitation -3.07 8.48 276.22 -37.72 44.94 

Dry Season Length 0.05 8.84 17121.33 -40.04 40.04 

RCP8.5 

2050 

Mean Temperature -23.33 17.35 74.40 -71.15 74.8 

Annual Precipitation -2.19 10.36 473.82 -30.6 37.05 

Dry Season Length 1.77 9.18 518.3 -30.88 40.00 

2080 

Mean Temperature -47.27 21.37 45.20 -86.15 89.76 

Annual Precipitation -6.17 10.20 165.31 -65.77 39.75 

Dry Season Length 0.13 12.29 9684.70 -75.15 40.00 

LS = land suitability scores, SD = standard deviation, CV = coefficient of variation, Min = minimum, Max = 

Maximum 

The changes in the land suitability of coffee areas occurred in both direction, upgrade and 

downgrade, and were time-dependent. Table 6 shows the tracking of land suitability changes [%] 

of the current coffee areas across time and climate scenarios. The coffee areas classified as 
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excellent and good in the year 2000 are reduced to less than 50% under the scenarios RCP 2.6 and 

RCP 4.5, and between 8 and 17% under RCP 8.5 for 2050 and 2080; most of these areas become 

moderate and marginal. On the contrary, above of the 93% of marginal and 75% of moderate 

coffee areas remains in the same category –except under RCP 8.5 in 2080. The coffee areas that 

experienced an upgrade from marginal or moderate to excellent or good-LS were below 5%. Only 

under RCP 8.5 at 2080, the upgrades from marginal [89.49% of the area in 2000] and moderate 

[63.62%] to good were higher. Similarly, unsuitable areas upgrade [71%] to marginal; however, 

the change is irrelevant because of the actual size of the unsuitable areas in 2000 [18 ha] (Table 6 

and Figure 8 ). Hence, in general, the dynamic of changes described a reduction of better suitable 

areas, and keeping up and increasing the moderate and marginal areas.  

Table 6. Land suitability changes expected under future climate scenarios for current coffee areas 

in Central America. 

*Land suitability categories: E = excellent, G = good, Mo = moderate, Ma = marginal, U = unsuitable. Land 

suitability score: unsuitable = less than 60%, marginal=60 to 75%, moderate = 75 to 85%, good = 85 to 90%, 

excellent = 90 to 100%. Notice: The 100% of areas under the current conditions is obtained by summing row 

values. Values in gray cells show the ratio of areas that remain in the same land suitability category from 

one period to the next. The values to the right of the gray cells indicate a land suitability downgrade, the 

ones to the left a suitability upgrade. No change situations would be observing 100 in a grayed cell. 

In addition to the dynamic of change, we calculated the annual rate of change (Rc) to depict 

the speed of the LS-changes [downgrade and upgrade] between years under the climate scenarios 

[2000-2050, 2050-2000 and 2000-2080] (Figure 10). Overall, the areas that scored LS above 80% in 

2000 [equivalent to LS excellent and good, and some moderate] show negative rates of changes 
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and areas with land suitability between 60-80% [marginal and some moderate] show positive 

rates under all the scenarios and periods evaluated. In the case of areas with LS below 60%, they 

display different rates of change depending on the scenario and period. Comparing the LS values 

between periods, we observed that the highest Rc of areas with good and excellent suitability 

occurred in 2000-2050 under the three RCPs [Rc Maximum = -4.42, Rc Minimum = -0.16]; then, the 

rate decreases in 2050-2080 [Rc Max. = -1.53, Rc Min. = -0.07] (Table 6, Figure 8 & Figure 10). In case 

of RCP 2.6 and 4.5, the highest rate of change under three scenarios occurs at 2000-2050, then a 

deceleration of the rate of change occurs at 2050-2080, and RCP 8.5 shows mixed results between 

periods (Figure 10). These changes imply progressive changes in the land suitability per year; for 

example, out of 145,639 ha of coffee areas classified as LS-excellent in 2000, about 1,617 ha per 

year are expected to downgrade to good or moderate until 2050, remaining only 45.36% of the 

areas under LS-excellent, then the trend slows down until reach 43.95% by 2080. This rate 

variation between periods responds to the warming effect of the RCPs over both periods (Table 

5). According to the CMIP5 model, the global warming trend depicts a rising in mean air 

temperature under the three RCPs around of the middle of the century, then the trend stops under 

RCP 2.6 [warming ~ 1 °C], continues at a lower rate under RCP 4.5 [~ 1.8 °C], and increases under 

RCP 8.5 [~ 3.2 °C] until 2080 (Knutti and Sedláček, 2012).  

 

Figure 10. The rate of change of coffee areas between the periods 2000-2050, 2050-2080 and 2000-

2080 under climate scenarios. The rate depicts the intensity and direction: gains (+) or losses (-). 

Notice the higher rates occurred in 2000-2050 under most of the climate change scenarios. 
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3.3.2. Reference coffee areas 

Looking at the reference coffee zones gives us a sharper insight of the dynamics of LS-change 

at the local level (Figure 11), and confirms our previous comment on “some areas will suffer 

higher alterations in their suitability than others” based on regional results (Table 5). Under 

current conditions, the coffee areas of Tarrazú are considered as LS-excellent, Jinotega, and 

Márcala as good, El Paraíso, Masatepe and Turrialba as moderate, and San Carlos and Nueva 

Guinea as marginal (Lara-Estrada et al., 2017). For more details about the current conditions of 

soil, landform and climate see the content relate to reference zones in section 2.4 (Lara-Estrada et 

al., 2017). Our results show that most zones will downgrade their LS, but some will downgrade 

more than others, and others will even experience slight upgrades under the less severe scenarios. 

Tarrazú, Jinotega, and Márcala will downgrade the least [-4%], and even Tarrazú and Márcala 

may experience some minor upgrades in LS under the less severe scenarios [RCP 2.6 and 4.5]. 

Turrialba and Masatepe will experience the highest loss of LS under the RCP 2.6 and 4.5 (Figure 

11).  

Under RCP 8.5, except Tarrazú, all the coffee areas experience the most substantial LS reductions 

of the three RCPs. Therefore, most of the reference zones may become marginal or unsuitable 

under RCP 8.5 by 2080 (Figure 11). 

 

Figure 11. Expected land suitability changes for seven coffee reference zones in Central America. 

EPA=El Paraíso, MAR=Márcala; Nicaragua: NGU=Nueva Guinea, MAS=Masatepe, JIN=Jinotega; 

Costa Rica: SCA=San Carlos, TUR=Turrialba, TAR=Tarrazú. 

3.3.3. Adapting to the land suitability changes 

Given the LS-downgrade foreseen to 2050 (Table 6), actions need to be implemented in a 

timely manner. Some authors have pointed out that moving the coffee areas to higher altitudes 

may be a solution to compensate for the warming conditions (Läderach et al., 2010; Zullo et al., 

2011); and some areas currently not suitable for coffee will become suitable in the future (Figure 
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9 and Figure A8). But given the history, current dynamics of land use change and land regulation 

in the Central American countries, such strategies may not be realistic (Blackman et al., 2006; 

Boucher et al., 2005; Broegaard, 2010; Charlip, 1999, p. 1999; Zeledon and Kelly, 2009). Instead, 

Haggar and Schepp (2012) mention a series of adaptation strategies that include technical, 

financial, and organizational aspects that farmers and farmers’ organization can ponder and 

implement to improve their level of resilience to climate change effects. In this sense, and 

considering our land suitability approach, the adaptation strategies should include practices and 

technologies that improve the land and coffee plantation conditions. Some of these practices and 

technologies include agroforestry [which provides goods and services], conservation of soil and 

water, and better-adapted coffee varieties (Blanco and Aguilar, 2015; Harvey et al., 2014; 

Lashermes et al., 2009). Agroforestry is widely used in the coffee areas in the region; however, 

the modification in the structure, composition and shade level of the tree component might need 

to fit the CC conditions. Also, the use of better-adapted varieties to shading, drought and 

warming conditions are an option to improve the resilience of coffee farms under marginal and 

moderate LS conditions (Bertrand et al., 2011; Montagnon et al., 2012).  

The adaptation strategy [selection of practices and technologies] should be integrated into 

the farming strategy of each coffee farmer. This integration can occur under an agroforestry 

planning process (Somarriba, 2009; Vega and Somarriba, 2005) that consider the current and 

expected states of the land components [soil, landform and climate] and coffee plantation, past 

and latent risks for coffee production [coffee rust, price crisis, local land use change tendencies], 

diversification alternatives, and the farmers’ socioeconomic conditions and preferences under an 

agroecological scope.   

Based on the variability in speed and severity of the LS-changes in the reference coffee zones 

[local level], the policies and support programs to farmers and farmers’ organizations should 

consider capturing such variability and facilitate the legal, technical and financial tools to plan 

and implement the farming strategies. For example, under the less severe scenarios, coffee areas 

with coffee quality reputation like Tarrazú, Jinotega, and Marcala that are expected to experience 

slight LS-downgrade might need to only adjust their coffee farming strategy [practices and 

technologies] to fit the new conditions, passing from a farming strategy based on “coffee quality” 

to a strategy more oriented to “quantity”. On the other hands, coffee areas with higher LS-

downgrades will be forced to implement major adjustments or even shift to other crops or land 

production systems (Vermeulen et al., 2013).  

Finally, due to the magnitude of the changes in the land suitability across the coffee areas in 

the region, even the coffee adaptation actions were implemented in time, and the coffee 
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production continues in the region, the amount of coffee produced and the quality profile of the 

region will be affected negatively.  

3.4. Conclusions 

Climate change will downgrade the current climate suitability and consequently the land 

suitability of the coffee areas in Central America; even the less severe scenarios will reduce the 

suitable areas significantly and increasing the marginal and moderate areas. Under the worst 

climate change scenario, most of the coffee areas will become marginal or unsuitable for coffee 

(Coffea arabica L.).  

Given the expected rate of land suitability downgrade by 2050 and the perennial nature of 

the coffee plant, most of the actions to adapt the coffee farmers have to be implemented in short. 

Such actions should be integrated into a planning process that considers the current and future 

conditions of the main biophysical productive factors as well as socioeconomic and market factors 

that lead to possible farming strategies for farmers. Under these planning processes, the land 

suitability evaluations provide valuable information on the primary productive factors to 

decision makers and farmers. 

  

3.5. Appendices III 

Appendix III-A. Published suitability evaluations for Coffea arabica L. 

Table-A 1. Published suitability evaluations for Coffea arabica L. and their capability to deal with 

different type of uncertainty.  

Studies 
Variables considered  Type of uncertainty 

Climate Soil Landforms  Parameters Input data Output data 

ALECA X X X  X X X 

Mighty (2015) X X X     

Nzeyimana et al. (2014) X X X     

Bunn et al. (2014) / Ovalle et al. (2015) X    X  X 
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Figure A8. Expected land suitability changes for coffee production in Central America under 

climate change. Reference year: 2000. Notice changes inside of each legend’s land suitability 

ranges occur.  
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4. INFERRING MISSING CLIMATE DATA FOR 

AGRICULTURAL PLANNING USING 

BAYESIAN NETWORKS3 

4.1. Introduction 

Missing data is a major challenge for agricultural planning, reporting and research not only 

at the level of individual farms, but also at regional, national, or international scales. Incomplete 

information leads to misrepresentation and bias, but collecting the missing data can be very costly 

(Little and Schenker, 1995; Miller et al., 2010). Several procedures have been employed in 

previous applications to deal with data gaps. For example, the Agricultural Resource 

Management Survey in the USA uses conditional or national averages with or without outliers 

(Miller et al., 2010). In agricultural research, data gaps have been filled by combining survey and 

satellite information (Frolking et al., 2002), spatial interpolations (Smith et al., 1996), introduction 

of proxy variables (Liu and Scott, 2001), and, in the case of climate research, by using the 

regularized EM algorithm for Gaussian data (Schneider, 2001), empirical orthogonal functions 

(Smith et al., 1996), grouping methods of data handling (Acock and Pachepsky, 2000), and others. 

A scarcity of data, data with a high uncertainty attached or inhomogeneous data from 

different sources is especially prevalent in developing countries. While the procedures described 

above are mostly suitable for dealing with the problem, their practical implementation in 

developing countries is often difficult due to a lack of qualified personnel and financial shortfalls 

(Harris, 2004; Wagner et al., 2001; World Bank., 2013). For example, in several Central American 

countries, the reconstruction of climate variables using interpolation methods was only possible 

with external funding from the World Bank (World Bank., 2013). To overcome these hurdles, we 

propose to use a Bayesian network (BN), which is a mathematical model that graphically 

represents conditional probabilistic dependencies between variables. BNs can deal with 

uncertainty, missing data, missing (hidden) variables and small datasets; it is possible to learn 

the graphical structure and the parameters of the model from data, literature, expert knowledge 

or a combination of all (Aguilera et al., 2011; Barton et al., 2012; Sucar, 2015a; Uusitalo, 2007). 

                                                 
3 Lara-Estrada, L., Rasche, L., Sucar, L.E., Schneider, U.A., 2018. Inferring Missing Climate Data 

for Agricultural Planning Using Bayesian Networks. Land 7, 4. 

https://doi.org/10.3390/land7010004 

http://www.mdpi.com/2073-445X/7/1/4
http://www.mdpi.com/2073-445X/7/1/4
http://www.mdpi.com/2073-445X/7/1/4
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Another practical advantage of using BN is the availability of free software (Kevin Murphy, 2014; 

Mahjoub and Kalti, 2011). 

In a BN approach, data can be generated for variables with missing values while maintaining 

a consistent relationship with other variables in the same dataset  (Cano et al., 2004). It also 

allows the user to incorporate the uncertainty surrounding input data by entering a range or 

distribution of possible values or by using the prior information parameterized in the model 

when no information is available. Instead of a single, certain value, the output is then the most 

probable value of the variable of interest with the uncertainty attached (Aguilera et al., 2011; 

Norsys, 2015; Uusitalo, 2007). The Bayesian ability to handle uncertainty in the modeling process 

is advantageous, considering that uncertain and missing data are common in real-world 

situations (Andradóttir and Bier, 2000), especially when dealing with climate variables and when 

working in regions without good data coverage (De la Torre-Gea et al., 2011; Fang et al., 2009; 

World Bank., 2013). 

There are several options in BNs for dealing with missing data: removing the registers with 

missing values; using mode values in place of the missing values or estimating the missing values 

based on the values of the other variables in the corresponding register using probabilistic 

inference (Sucar, 2015a). The last option has the advantage that the complete dataset is used, and 

that specific values are estimated for the missing registers instead of only a measure of central 

tendency like the average or median. Therefore, in our approach, we estimate the missing values 

based on proxy variables and probabilistic inference. As a case study, we created a novel Bayesian 

network model to estimate the relative humidity for Central America and Southern Mexico. In 

order to build the model, we used machine learning algorithms available in the Bayesian 

networks approach to define the model’s graphical structure and parameters from monthly 

relative humidity data (Friedman et al., 1997; Norsys, 2015; Spiegelhalter et al., 1993). We then 

applied the model to infer values for relative humidity under two conditions: using a complete 

set of input information, and incomplete information, where one or two of five proxy variables 

were unavailable. The second scenario shows the capability of BN models to produce results even 

when information is missing. In both scenarios, monthly relative humidity and the Relative 

Humidity of the Driest Month (RHDM) were inferred. RHDM is one of the main variable-

indicators to describe the land suitability for Coffee arabica L. production (Descroix and Snoeck, 

2004). 

A comparison of BN-estimated and reported values of monthly relative humidity and 

RHDM shows a high level of agreement between the values. The results also indicate a high level 

of consistency in the relationship between estimated relative humidity and proxy variables, 
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which is one of the major concerns in modeling climate data. We conclude that the proposed 

method is a practical solution for estimating relative humidity, as it is based on information that 

is readily available and does not require high computational resources or technical expertise. 

Furthermore, estimating climate data for agricultural planning constitutes an important and 

unexplored domain for the application of probabilistic graphical models, which have only been 

used in climate science for weather forecasting (Cofiño et al., 2002) and to explore the 

dependencies between climate variables so far (De la Torre-Gea et al., 2011). Thus, this study 

forms an important contribution to the literature of BN applications and offers a valuable tool for 

coffee planning in Central America. 

4.2. Methods 

4.2.1. Study area 

The study region, consisting of Central America and Southern Mexico, is located in the 

tropical zone, where the temperature remains relatively constant throughout the year and 

changes in season are driven by changes in precipitation. The prevalence of high water vapor 

contents and tropical temperatures leads to a high relative humidity (Peixoto and Oort, 1996; 

Taylor and Alfaro, 2005). The climatic conditions are favorable for coffee production, and most 

countries in the region are recognized for their high-quality coffee and shaded coffee systems 

(Avelino et al., 2005, 2002; Bertrand et al., 2006; Somarriba et al., 2004; Vaast et al., 2004), together 

producing more than 10% of the total global coffee supply (Bertrand and Rapidel, 1999; ICO, 

2015). However, projections of climate change show that the region is likely to experience severe 

alterations in climate in the future, which may negatively impact coffee production (Gay et al., 

2006; Haggar and Schepp, 2012; Läderach et al., 2010). 

4.2.2. Relative Humidity 

Relative humidity describes the water content in the air (Primault, 1979) and is normally 

calculated from the ratio between the saturation vapor pressure and the vapor pressure at a 

specific temperature (Harrison, 2014; Lawrence, 2005). Relative humidity has been identified as 

a key factor for coffee quality during the postharvest-storage (Ribeiro et al., 2011; Rojas, 2004) and 

as an agroecological variable that influences the suitability of a site for coffee production 

(DaMatta et al., 2007; Descroix and Snoeck, 2004). For example, values of RHDM between 50–60% 

are considered optimal, and values below 20% or above 80% as suboptimal for coffee cultivation 

(Descroix and Snoeck, 2004). Measurements of relative humidity are done using hygrometers in 



59 

 

weather stations; however, this type of measurement is more expensive than measuring 

temperature or precipitation and therefore done far less frequently. To close the data gap, the 

development of modeling tools to estimate humidity based on other measured variables is a 

feasible strategy (Eskelson et al., 2013; Peixoto and Oort, 1996). In this study, we model the 

variable monthly relative humidity and relative humidity of the driest month, i.e., the month with 

the lowest precipitation. 

4.2.3. Data 

Variables experimentally observed or produced by reanalyses retain consistency among 

themselves. In our approach, we exploit this correlation to build and parameterize a Bayesian 

network model for inferring missing values for the relative humidity values from other climate 

variables. As a data source, we use the surface reanalysis dataset Climate Forecast System 

Reanalysis (CFSR) (Fuka et al., 2014; Saha et al., 2010). CFSR14 includes daily values for the 

variables precipitation (mm), air temperature (°C, minimum and maximum at 2 m), wind speed 

(m/s, at 10 m), surface solar radiation (MJ/m2) and relative humidity (%, at 2 m). The spatial 

resolution is 38 km × 38 km per pixel and data are available from 1979 to 2014. 

We downloaded a set of daily data of all variables, covering Central America and Southern 

Mexico (a total of 855 pixels) for the years 1979 to 2000. From this dataset, a monthly subset MRH 

was created by aggregating the daily to monthly data for each year and pixel (n = 225,720). Then, 

a second subset RHDM was created by extracting the data (cases) of all the variables for the driest 

months of each year (n = 18,810). Summary statistics for the variables of both datasets were 

calculated (Table A2): The data distribution for humidity is different in both datasets, with μ = 

77.79 and 69.13, and σ = 9.66 and 9.08 for the MRH and RDHM datasets, respectively, and in the 

RDHM dataset, the shape of the humidity distribution is more skewed to the left (Figure 12). The 

distribution of precipitation also differs markedly between both datasets (μ = 8.13 and 1.05, and 

σ = 8.38 and 1.79 for MRH and RDHM datasets, respectively), whereas only minor difference can 

be found for solar radiation, maximum and minimum temperature, and wind speed. 

                                                 
4 https://globalweather.tamu.edu/ 
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Figure 12. Empirical distributions of monthly relative humidity, precipitation, maximum and 

minimum temperature, solar radiation and wind speed from the datasets MRH and RHDM (n = 

225,270 and 18,810, respectively). MRH: Monthly Relative Humidity; RHDM: Relative Humidity 

of the Driest Month. 

4.2.4. Variable Selection 

An exploratory analysis using principal components was done to identify which variables 

should be included in the model. For this, the complete dataset MRH was used (n = 225,270). The 

two first principal components explained 91.7% of the data variability (PC1 = 75.5% and PC2 = 

16.2%) (Figure 13). Relative humidity has a positive correlation to precipitation (PRCP), and a 

negative one to TMAX and solar radiation (Solar) (PC1). Under intermediate conditions of 

precipitation and solar radiation, wind and TMIN have a major influence on the range of relative 

humidity (65–85%, PC2). With the exception of TMAX, relative humidity has a non-linear 

relationship with the proxy variables (Figure A9). Since all proxy variables thus influence relative 

humidity in different situations, we included all in the model. 
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Figure 13. Principal component analysis including precipitation (PRCP), maximum temperature 

(TMAX), minimum temperature (TMIN), solar radiation (Solar) and wind speed (Wind) using 

monthly relative humidity (MRH) categorical values as the classification variable (n = 225,720). 

Gray dots and attached numbers correspond to MRH categorical values. 

4.2.5. Discretization 

The model was built using the software package Netica (Version 6.04, Norsys Software Corp., 

Vancouver, BC, Canada), which is free for small models with less than 15 variables. For each 

selected variable, nodes were created and discretized. The discretization of continuous variables 

in BN leads to the loss of information (Aguilera et al., 2011). An accepted strategy to deal with 

this is to mimic the data distribution of the variables in the discretization (Allan et al., 2012; 

Nojavan A. et al., 2017); however, the definition of the breakpoints for each state is a major 

challenge (Marcot et al., 2006; McCann et al., 2006; Nojavan A. et al., 2017). There are automatic 

methods to discretize continuous variables, but the selection of one method over another based 

on their performance is not clear, and using automatic methods may result in a discretization 

inappropriate for the purpose of the model and the users. For this reason, expert knowledge 

remains the best option for discretization (McCann et al., 2006; Nojavan A. et al., 2017; Uusitalo, 

2007). 

Here, we seek to estimate monthly relative humidity and the relative humidity of the driest 

month using a single model. The data distribution for precipitation is narrower for RHDM than 

for MRH (Figure 12 and Figure A9) and thus requires shorter breakpoints to gain enough 

precision to infer the relative humidity under dry conditions. We, therefore, split the states into 
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two: for the lower values that correspond to the data distribution of the cases5 of RHDM the 

breakpoints are shorter, and for the remaining range, the breakpoints are further apart. For the 

other proxy variables, intervals of equal length were implemented focusing on reproducing the 

distribution of the data. States were merged if the resulting states had a frequency distribution 

close to zero. The number of states of each variable was also based on the level of influence of this 

variable on relative humidity (see Section 4.3.1); the less influence, the less states were defined, 

thus contributing to reducing model complexity without loss of performance (Figure 14). 

 

 

Figure 14. The Bayesian network model to infer monthly relative humidity. (A) Compiled model 

without evidence entered; (B) Model state when model is inferring the relative humidity of the 

driest month using only three proxy variables. Grey boxes indicate that evidence (values) were 

entered for the corresponding variables; the model uses the available new information to update 

the states of the remaining unknown variables (Wind, Solar, RH). RH: relative humidity (%), 

TMAX: maximum temperature (°C), TMIN: minimum temperature (°C), PRCP: total 

precipitation (mm). Graphical structure and parameters learned from the reanalysis dataset CFSR 

(Fuka et al., 2014; Saha et al., 2010). 

We used the metric Spherical Payoff6 to evaluate the contribution of a change in range or 

the number of states on model performance. If a change in the state’s range or number of states 

performed better, the change remained. 

 

                                                 
5 A case is the set of values of the proxy variables and relative humidity for a given month per a given pixel. 

For example, in the Figure 14B, the case entered in the net has values only for three variables. 

6 The Spherical Payoff is a scoring metric used to test the performance of Bayesian network models. The 

score goes from 0 to 1, where 1 is the best performance (Marcot, 2012). 
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4.2.6. Model Structure and Parameters 

Once the node variables were discretized, the graphical model was learned from 80% of the 

cases of the dataset MRH (n = 180,530). The relative humidity node was set as the target variable, 

and the machine learning algorithm Tree Augmented Naive Bayes (TAN) was used to learn the 

model structure (Figure 14). TAN is a Bayesian classifier that incorporates dependencies between 

attributes by building structures between them (Friedman et al., 1997). The TAN algorithm drew 

edges from relative humidity to each proxy variable, and added extra edges between proxy 

variables. Using the same 80% of the MRH dataset, the Bayesian Counting—Learning Algorithm 

(Norsys, 2015) was used to learn the parameters –prior and conditional probabilities- of all 

variables in the model. The Counting—Learning Algorithm allows the model to move from 

initial-ignorance mode to parameterized mode by calculating the conditional probabilities and 

experience (confidence of the conditional probabilities) of the corresponding combination of 

variables’ states (Norsys, 2015; Spiegelhalter et al., 1993). Once the parameter values are learned, 

the model can be compiled and is ready for use. An online version of the model is available at the 

following link: https://dev.hed.cc/?s=HR 

4.2.7. Sensitivity Analysis and Model Validation 

After compiling the model, we did a sensitivity analysis using the variance reduction 

procedure. The variance reduction estimates the impact of a change in the state of a proxy variable 

on the state of the target variable (Marcot, 2012). The variance reduction values range from 0 to 

100%, where a higher value indicates a higher influence (Marcot et al., 2006; Norsys, 2015). 

We validated the model in two ways. First, we tested the ability of the model to infer the 

monthly relative humidity of any given month in the year and the specific relative humidity of 

the driest month for the same period using all the proxy variables (PRCP, TMAX, Solar, Wind, 

and TMIN). Second, we explored the capability of the model to infer relative humidity with the 

variables Solar and Wind missing, which are hardly registered in the study region’s weather 

stations (Figure 14B). The output value in the second case is the expected value, which is the mean 

of the possible states, weighted by their probability of occurrence (Norsys, 2015). As input data, 

we used the remaining 20% of the cases of the MRH dataset (n = 45,190) for inferring monthly 

relative humidity, and all the cases of the RHDM dataset (n = 18,810) for inferring the relative 

humidity of the driest month. Then, we compared the inferred to the observed values. For this, 

we used the metrics RMSE and bias (Badescu, 1993; Marcot, 2012). Finally, we provide a spatial 

https://dev.hed.cc/?s=HR
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comparison between the inferred and reported values described above, and suitability maps of 

the relative humidity of the driest month for Coffea arabica L. for the entire study region. 

4.3. Results and Discussion 

Climate variables dynamically interact at the same time and space, and some of these 

interactions are non-linear relationships. Being able to define our model structure and parameters 

using learning algorithms was therefore a significant advantage of the Bayesian network 

approach, which allowed us to capture this natural complexity in a simple explicit graphical 

model (Figure 13, Figure 14 and Figure A9). 

4.3.1. Sensitivity Analysis 

The sensitivity analysis (variance reduction) shows that precipitation and maximum 

temperature have the highest influence on relative humidity, followed by solar radiation, wind 

speed and minimum temperature (Table 7). This is expected, as relative humidity is a measure of 

the water content of air and variations in precipitation will influence this water content (Harrison, 

2014; Magaña et al., 1999), and higher temperatures in tropical regions boost evapotranspiration 

processes, which release water to the air. Despite the low influence of TMIN on relative humidity, 

the variable has a strong influence on Wind, Solar and TMAX (Table 7), which is a result of the 

edges added by the TAN algorithm during the structure learning step. The influence between 

proxy variables is relevant in situations where a variable is unknown. The model can use the 

known proxy variables to update the states of the remaining unknown proxy variables and the 

relative humidity (Figure 14B), facilitated by the implicit representation of the joint distribution 

of the model obtained from the structural and parameter learning (Friedman et al., 1997; 

Spiegelhalter et al., 1993). The variables PRCP, TMAX and TMIN are thus the most influential in 

the entire network, and are required by the model to produce enough evidence to obtain good 

estimates for relative humidity. 
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Table 7. Results of the sensitivity analysis using variance reduction *  

Proxy 

variables 

Target variables 

RH PRCP TMAX Solar Wind TMIN 

RH - 25.20 29.30 22.80 18.50 4.68 

PRCP 41.80 - 7.70 3.22 0.89 5.42 

TMAX 33.90 6.67 - 17.60 7.41 29.60 

Solar 17.90 2.36 16.00 - 16.60 21.50 

Wind 13.70 2.18 1.73 19.10 - 24.90 

TMIN 1.94 3.09 24.20 28.60 45.90 - 

* Variance reduction values go from 0 to 100, where a higher score indicates a higher influence on the target 

variable. Variables: Relative humidity (RH), precipitation (PRCP), maximum temperature (TMAX), 

minimum temperature (TMIN), solar radiation (Solar), and wind speed (Wind). 

4.3.2. Validation 

The expected values of monthly relative humidity and relative humidity of the driest month 

were inferred using (1) complete cases for all proxy variables, and (2) incomplete cases, where 

data of specific variables were missing, in our case once Wind, and once both Solar and Wind. In 

general, when comparing inferred values to reported values (Table 8) the metrics bias (less than 

the unit) and RMSE (<5%) indicate a very close agreement between values. As expected, the best 

model performance was obtained when information on all proxy variables was available; 

however, even under conditions of missing variables, the results were still very good (Table 8 

and Figure 15). The only observable effect of missing variables was a lower model performance 

when estimated relative humidity values were <60%, which could be the result of the low number 

of cases in the MRH training dataset in this range (5.3% of total cases; 6 cases at 30–40%, 361 cases 

<50%, and 2060 cases <60%). Therefore, for some combinations of variable states, there were very 

few cases defining the conditional relationships (experience) between the variables, and the 

missing variable conditions increased the uncertainty during the inference. 
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Figure 15. Scatter plot of model-estimated vs. reported values of monthly relative humidity (MRH) 

and relative humidity of the driest month (RHDM) using complete and incomplete data. Wind: 

wind speed, and Solar: solar radiation. Data source: reanalysis dataset CFSR (Fuka et al., 2014; 

Saha et al., 2010). 

 

Table 8. Model performance inferring the monthly relative humidity (MRH) and the relative 

humidity of the driest month (RHDM) using proxy variables. 

Inferred 

variable 

Cases (dataset) a Proxy variables** a Metrics 

Model 

building* 
Validation a Known Missing a BIAS RMSE 

Monthly 

relative 

humidity 

180,530 

(MRH) 

45,190 

(MRH) 

a PRCP, TMAX, Solar, Wind, TMIN - a -0.99 4.03 

a PRCP, TMAX, Solar, TMIN Wind a -0.52 4.13 

a PRCP, TMAX, TMIN Solar, Wind a -0.40 4.13 

Relative 

humidity 

of the 

driest 

month 

180,530 

(MRH) 

18810 

(RHDM) 

a PRCP, TMAX, Solar, Wind, TMIN - a -0.26 2.25 

a PRCP, TMAX, Solar, TMIN Wind a -0.76 4.93 

a PRCP, TMAX, TMIN Solar, Wind a -0.08 5.00 

* Graphical structure and parameters. ** Proxy variables: Precipitation (PRCP), maximum temperature 

(TMAX), minimum temperature (TMIN), solar radiation (Solar), and wind speed (Wind). 

Eskelson et al. reported similar RMSE values (3 to 4%) in a study in which they used air 

temperature in a set of linear models to estimate relative humidity in a Riparian forest (Eskelson 

et al., 2013), and Eccel reported RMSE values of 8–11% in his attempt to estimate relative humidity 

based on temperature and precipitation in the Italian Alps (Eccel, 2012). When comparing the 

performance metrics to the error of observation inherent in measurements using hygrometers, 
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this study’s accuracy falls in the middle of the accepted error range (1 to 5%) set for sensors 

(Eskelson et al., 2013; Harrison, 2014). Even though our metrics are thus similar to the ones 

reported by other authors, our approach has the additional advantage that it is possible to use 

new available information on proxy variables to update the states of the unknown proxy 

variables and therefore the target variable relative humidity Table 8 and Figure 15. Scatter plot of 

model-estimated vs. reported values of monthly relative humidity (MRH) and relative humidity 

of the driest month (RHDM) using complete and incomplete data. Wind: wind speed, and Solar: 

solar radiation. Data source: reanalysis dataset CFSR (Fuka et al., 2014; Saha et al., 2010).). This 

feature is relevant to real world situations, where missing information is a frequent condition. In 

the case presented in Figure 14B, the new evidence of PRCP, TMAX and TMIN provoked the 

update of the states of the (unknown) variables Solar, Wind and relative humidity (see Figure 14: 

compare the probability distribution of variables in Figure A,B). 

Finally, we present a spatial comparison of model-estimated vs. reanalysis-reported RHDM 

values, and a suitability map of RHDM for coffee production over the region of Central America 

and Southern Mexico (Figure 16). It shows that the model reproduces the general spatial patterns 

well and coffee areas are located mainly in areas with high to medium RHDM-suitability. Thus, 

the relative humidity estimated with the method described in this study can be used reliably in 

spatially explicit land evaluation tools such as the model ALECA (Agroecological Land 

Evaluation for Coffea arabica L.), which consists of several climate, soil and landform variables that 

together describe and evaluate the suitability of land units for the production of Arabica coffees 

(Lara-Estrada et al., 2017). 

 

Figure 16. Maps of relative humidity of the driest month (A) reported in the CFSR reanalysis 

dataset for Central America and Southern of Mexico (pixel size 38 km × 38 km); and (B) estimated 

with our BN model. (C) Suitability map of relative humidity of the driest month for Coffea arabica 

L. based on the estimated values using complete dataset. Reference year: 2000. Suitability map 

modified from Descroik and Snoeck (2004): Optimal = Optimal conditions (50–60%), S1 = Very 

good (40–50% and 60–70%), S2 = Moderate (70–80%), S3 = Marginal (>80%). 
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Other potential areas of application for this method are in paleoclimatology, where missing 

information is a normal situation, in meteorology and climate science to predict and explore the 

dynamics between climate variables, or in crop modeling applications, where available datasets 

are frequently incomplete. In the future, we plan to include the use of Dynamic Bayesian 

Networks to estimate a variable’s values at different time steps considering the previous state 

values and new information (Ghahramani, 1998; Ibargüengoytia et al., 2013). 

4.3.3. Caveats 

We used a complete dataset to create the model (structure and parameters); however, 

incomplete data is a common situation in the study area. Bayesian networks can deal with this 

situation by using learning algorithms for missing data, such as the Expectation-Maximization or 

Gradient Descent algorithms. Their implementation (in Netica) is similar to the steps described 

here using the Counting-Learning Algorithm (Korb and Nicholson, 2011; Norsys, 2015; Sucar, 

2015b). 

It should also be kept in mind that if the model is used in a different region, or with data of 

a higher resolution, variable states such as the range and maximum and minimum values need 

to be adjusted to the new conditions. In addition, in a high-resolution analysis, the addition of 

topographic and location (latitude and longitude) variables to the model may become necessary, 

as altitude, for example, can influence relative humidity at a local scale (Fries et al., 2012; Romps, 

2014) and location could capture the spatial variability of the climate variables in the region. 

Further adjustments would also be necessary if the time step is changed from monthly to weekly 

or daily. Lastly, even though we built the model to estimate relative humidity, this method is 

equally suited for inferring missing values for other climate variables. 

4.4. Conclusions 

In this paper, we describe the application of a Bayesian network to generate missing data of 

relative humidity based on its relationship to proxy variables. The procedure is simple, requires 

a low modeling effort, and ensures that the relationships between all climatic variables remain 

consistent throughout the process. The model shows a good performance estimating relative 

humidity, even in cases of uncertainty when proxy variables are missing. We conclude that 

Bayesian networks are a suitable tool for estimating relative humidity for agricultural planning, 

an essential and less-explored domain for the application of probabilistic graphical models. 
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4.5. Appendices IV 

Table A2. Summary statistics of relative humidity (RH), precipitation (PRCP), maximum 

temperature (TMAX), solar radiation (Solar), wind speed (Wind), and minimum temperature 

(TMIN) from the datasets MRH and RHDM. MRH: monthly relative humidity, and RHDM: 

relative humidity of the driest month. 

Dataset Variable Unit Mean S.D. Median Minimum Maximum Skewness Kurtosis 

RHDM 

RH       % 69.13 9.08 70.16 37.45 98.16 -0.41 -0.18 

PRCP     mm 1.05 1.79 0.47 0.00 24.41 4.19 24.69 

TMAX     °C 29.76 3.33 29.27 10.00 42.35 0.24 0.94 

Solar    MJ/m2 21.53 3.10 21.74 7.93 28.27 -0.39 -0.17 

Wind     m/s 3.37 1.73 2.85 0.77 11.51 1.08 0.64 

TMIN     °C 20.53 4.93 20.92 -2.66 29.17 -0.57 -0.26 

MRH 

RH       % 77.79 9.66 78.50 37.45 98.73 50.04 0.37 

PRCP     mm 8.13 8.38 5.47 0.00 83.94 -146.41 4.01 

TMAX     °C 28.75 3.05 28.48 10.00 42.35 -5.03 1.71 

Solar    MJ/m2 19.69 3.83 20.03 3.72 28.27 39.49 -0.04 

Wind     m/s 2.83 1.58 2.32 0.63 11.81 -109.93 1.35 

TMIN     °C 21.51 4.40 21.85 -2.66 29.54 50.07 -0.13 

Data source: surface reanalysis dataset Climate Forecast System Reanalysis (CFSR) (Fuka et al., 2014; Saha 

et al., 2010). 

 

 

Figure A9. Scatter plots of variables monthly relative humidity (MRH), and relative humidity of 

the driest month (RHDM). Data source: surface reanalysis dataset Climate Forecast System 

Reanalysis (CFSR) (Fuka et al., 2014; Saha et al., 2010). 
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5. ESTIMATING THE REQUIRED SHADE LEVEL 

IN COFFEE PLANTATIONS 

5.1. Introduction 

The optimal mean air temperature for Coffea arabica L. is around 20 °C, and unsuitable values 

are below 10 °C and above 30 °C (Alégre, 1959; Camargo, 1985; DaMatta and Ramalho, 2006; 

Jaramillo and Guzmán, 1984; Larcher, 1981). These optimal and suboptimal values of air 

temperature have been integrated into the land suitability model to evaluate coffee areas; see 

Table 2 in Chapter 2 (Lara-Estrada et al., 2017). Considering that climate change scenarios for 

Central America describe a rise in temperature; farming practices that provoke a reduction in 

temperature such as agroforestry should be evaluated, improved and promoted (IPCC, 2014). In 

most of the coffee area in the region, coffee is already cultivated under shade in agroforestry 

systems. The services and goods provided by the trees are used by farmers to define their farming 

strategy; having as results a set of diverse coffee agroforestry systems respect to the composition 

and abundance of the trees species and input-intensification of the coffee component. 

 The coffee literature includes studies that indicate air temperature reductions due to the 

shade of trees (Barradas and Fanjul, 1986; Siles et al., 2010; Souza et al., 2012). But few studies 

modeled such cooling effect of trees (Lin and Lin, 2010; van Oijen et al., 2010); and no one has 

evaluated the shade as an adaptation strategy to face climate change for the coffee system in the 

region. Therefore, in this chapter, based on available survey datasets of coffee farms in Nicaragua 

and parameters from literature, we created a simple Bayesian Network model to estimate the 

required shade level. In the next chapter, we then use the shade model to explore the adaptation 

potential of shade under climate change conditions.   

5.2. Usage of shading in coffee farms 

The technical recommendations about the usage of shading such as tree species selection, 

pruning rates and shading levels considering altitudinal ranges, national coffee regions, and pest 

and disease management are done in some capacity by coffee extension services or agronomists 

in the Central America region (ANACAFE, 2018; Boudrot et al., 2016; ICAFE-CICAFE, 2011; IICA, 

2004; López-Bravo et al., 2012). However inadequate shade usage [levels and pruning rates] has 

been pointed out in the region. Poor shade managementwas identified as one of the causes of the 

past coffee rust epidemic in the region (PROMECAFE, 2013). 
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In Nicaragua, coffee areas amount to about 190,000 Mz [approx. 133,500 ha] from which 

about the 96% of the coffee plantations is cultivated under shade conditions in agroforestry 

systems, and the main coffee areas are located in the Northern-central provinces of the country 

[Figure 17] (CATIE and MAGFOR, 2012). Therefore, we used three survey datasets to describe 

the use of shading in coffee farms in the Northern Central region of Nicaragua; then a new BN 

shade model is introduced, evaluated and used in the country’s coffee areas.  

 

Figure 17. Coffee areas [gray] by Provinces of Nicaragua (CATIE and MAGFOR, 2012).   

The three studies are Altamirano (2011), Lara-Estrada (2005), and Vaast et al. (2003); their 

general information about the altitude range, shade levels, and provinces are displayed in Table 

9. The location [coordinates] of coffee farms were available only in Altamirano (2011) and Lara-

Estrada (2005).  

Table 9. Datasets used to describe the shade usage by farmers in Nicaragua. 

Study n 
Altitude 

(m.a.s.l.) 

Shade 

(%) 
Provinces 

Lara-Estrada (2005) 67 630-1350 0-85 
Matagalpa, Jinotega, Nueva Segovia, Madriz and 

RAAN 

Vaast et al., (2003) 296 100-1500 10-80 
Boaco, Carazo, Granada, Jinotega, Madriz, 

Managua, Masaya, Matagalpa, Nueva Segovia 

Altamirano (2011) 404 785-1415 0-90 Jinotega 

Vaast et al., (2003) was developed in the Project Mejoramiento y Fortalecimiento en los Procesos de Certificación 

de Calidades y Comercialización del Café [funded by European Union and UNICAFE]. Altamirano (2011) was 

funded by the Project Apoyo a productores (as) de café en la Cuenca del Lago de Apanas [funded by Coffee cluster 

of Jinotega and AECID].   
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We observed variations between the studies’ reported shade values at the same altitudes 

[Figure 18]. Such variations may be a consequence of the difference in the method used to 

estimate the shade level: the shade was estimated by one person using a spherical densitometer 

in Lara-Estrada (2005); and by a team using the visual valuation method in Altamirano (2011) 

and Vaast et al., (2003). Therefore, given the implications of error of the latter method, we consider 

that dataset from Lara-Estrada (2005) provides a better approximation to the actual shade level 

(Bellow and Nair, 2003; Fiala et al., 2006). 

 

Figure 18. Reported shade values for coffee plantations at different elevations in Nicaragua. 

Shade values according to the data from Altamirano (2011), Lara-Estrada (2005) and Vaast et al., 

(2003). Tendency line indicates the average of the three datasets. Air temperature [°C] 

corresponds to the mean annual air temperature, which was extracted from the climate dataset 

Hijmans et al., (2005) and corresponds to the coffee plantations’ location of Lara-Estrada (2005).  

Despite the variations observed in the reported shade levels of the studies to a given altitude; 

the studies agree in describing a general tendency that depicts a negative relationship between 

shade and altitude, where shade levels increase along altitude decreases [warming conditions] 

[Figure 18], which means that farmers use higher shade levels at lower altitudes and lower shade 

at higher altitudes. Pearson coefficient results indicate a significant but low negative correlation 

for the datasets [Pearson correlation coefficient= Lara et al., of -0.25, Vaast et al., of -0.20 and 

Altamirano of -0.18]. The low coefficient may due to flat shade values [35-45 %] at 800-1200 

m.a.s.l. [optimal and close to optimal air temperature values of 20 °C], see Figure 18. 

The use of shade by farmer corresponds in a certain extent to the capacity of trees to alter the 

microclimate; particularly by reducing the temperature and increasing the relative humidity (Lin, 

2008; Siles et al., 2010). Therefore, using a higher shade level is a known strategy for farmers to 
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improve the stressing climatic conditions for coffee plants at lower altitudes. This microclimatic 

improvement might lead to an increase in coffee productivity [about 10-50%] and extend the 

coffee plantation longevity comparing with unshaded plantations at same conditions (Beer et al., 

1998; Muschler, 2004; Vaast et al., 2016). Hence, shade trees add a layer of suitability to the 

environmental climate suitability [without shade] of the land making possible the coffee 

cultivation under certain levels of sub-optimal warming climatic conditions. The need for the 

cooling effect of the shading ends at altitudes that reach the optimal temperature values for coffee, 

and the use of shade under such conditions might induce yield reductions. Even though shade 

trees can under optimal or colder temperature conditions help to deal with other land limitations 

such as improving soil or protecting against windy conditions (Muschler, 2004).  

The level of farming intensification is related to the level of shade used. Some farmers tend 

to use high levels of shade to reduce the photosynthetic activity in coffee plants, and therefore 

their demand for mineral fertilizers [, and avoid the corresponding associated costs] and extend 

the lifetime of the coffee plantation (Vaast et al., 2016). On the other hand, farmers with an input-

intensive farming strategy tend to use the required or lower shade levels for higher coffee 

productivity; a third situation is related to those farmers that use inadequate shade levels that do 

not fit to their intensification level [i.e., high inputs under high shading or low inputs under low 

shading]. In Figure 19, using the dataset Lara-Estrada (2005), we identified the three situations by 

depicting the relationship between shade levels, fertilizer application rates, and coffee yields. 

Here, the decreasing of shade level across the altitude seems to be associated with a growing 

fertilizer application rate and the corresponding increment in yields, which agree with previous 

studies that found the coffee yield is very responsive to mineral fertilization (Meylan et al., 2013). 

However, we also observed that some farmers using a low-intensification farming strategy at 

lower altitudes [600-700 m.a.s.l.] used less shade than required at such altitudes. Therefore, the 

usage of shade in coffee farms depends on existing land suitability conditions but also on the 

farmers’ decision over the plantation; a decision that is influenced by socioeconomic and cultural 

factors (Lara-Estrada, 2005).  
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Figure 19. Shade levels (%), granular fertilizer rate usage (no.), and coffee yields [qq Mz-1] at 

different altitudes. GF: Granular Fertilizers [Urea 46% and NPK]. The displayed values 

correspond to the mean and standard error. Dataset Lara-Estrada (2005). Notice the dynamic of 

change of the variables across the altitudes; e.g., 600-700 m.a.s.l. = high shading, low GF, low 

yield; 1300-1500 m.a.s.l. = low shading, high GF, high yield.    

 

5.3. Modeling the cooling effect of shading  

5.3.1. Model development 

The ALECA’s suitability function for air temperature [S] is a response curve that depicts the 

suitability level of a given air temperature value [0-100 %, where 100 is excellent] (Lara-Estrada 

et al., 2017). On the other hand, some studies report a reduction of temperature ranging from 1 to 

5 °C as a cooling effect of the shading under agroforestry systems (Barradas and Fanjul, 1986; 

Fanjul et al., 1985; Garedew et al., 2017; Mariño et al., 2016; Morais et al., 2006; Righi et al., 2008; 

Siles et al., 2010; Souza et al., 2012). Therefore, based on this literature and the suitability function 

for air temperature of ALECA, empirical response functions were developed to estimate: 1) the 

shade level required (Shr) by coffee plantation given the environmental air temperature [Ti]; 2) 

the air temperature reduction due to shading [Tr]; and 3) the air temperature suitability under 

shading [S'] (Table 10).   
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Table 10. Functions to estimate the air temperature suitability with and without shading.  

Variables Equations 

Shade level required 

(%) 

𝑆ℎ𝑟 = {

 
 0, 𝑖𝑓  𝑇𝑖 ≤ 20 °C;

[(𝑇𝑖 − 20) ÷ 0.0444] + 0.023, 𝑖𝑓 𝑇𝑖 ≤ 30 °C;
  90, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 

Where 𝑆ℎ𝑟 is the shade level required (%) according to 𝑇𝑖 .  

𝑇𝑖 is the annual mean air temperature (°C ). 𝑇𝑖 = 20 °C is assumed as 100% suitable, below this 

value shade is not required. If 𝑇𝑖 > 30, the shade level is fixed to 90 %. 

Temperature 

reduction (°C) 

𝑇𝑟 =  0.0444 ∗  𝑆ℎ𝑟 − 0.023 

Where 𝑇𝑟 is the mean air temperature reduction (°C) due to shading. Maximum 𝑇𝑟 = 4 °C. 

Suitability function for 

𝑇𝑖 under the shade of 

trees (%) 

𝑆′ =  {

𝑆, 𝑖𝑓  𝑇𝑖 ≤ 20 °C;                        

𝑇𝑖~𝑁((𝜇 − 𝑇𝑟), 𝜎
2} ÷ 𝑇𝜇~(𝜇, 𝜎

2) ∙ 100;      𝑖𝑓 𝑇𝑖 ≤ 30 °C;

0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Where 𝑆′ is the suitability score (0-100 %, where 100% is excellent suitability) for a given 

annual mean temperature 𝑇𝑖 considering the 𝑇𝑟 under the 𝑆ℎ𝑟.  

Suitability function for 

𝑇𝑖 under unshaded 

conditions (%) 

𝑆 =  𝑇𝑖~𝑁(𝜇, 𝜎
2) ÷ 𝑇𝜇~(𝜇, 𝜎

2) ∙ 100 

 

Where 𝑆 is the suitability score (0-100 %, where 100% is excellent suitability) for a given 

annual mean temperature in °C (𝑇𝑖) that has a normal distribution with mean 𝜇 = Tμ= 20 and 

variance σ2 = 3.89 (Lara-Estrada et al., 2017). 

 
Based on the equations of Table 10, a Bayesian network model was created to infer the 

required shade by coffee plantations based on the environmental mean air temperature, and the 

corresponding suitability values for air temperature under shade and unshaded conditions.   

Model structure. Using the Bayesian network software Netica (Norsys, 2018), a node was created 

for each variable; then, variables were linked according to the flow of input-output relationship 

described in the equations [Table 10]. Considering missing data is a common situation, and the 

air temperature values of a particular location might not be available for decision-makers, the 

variables Altitude [m.a.s.l.], and Provinces were added as proxy variables to infer the annual 

mean temperature [Ti]. Altitude has a negative correlation with temperature (Barry, 2008) and is 

commonly used as a proxy for climate suitability for coffee cultivation (Avelino et al., 2005; 

ICAFE-CICAFE, 2011; Pineda, 2001). Provinces represent the variations in latitude and longitude 

and landform (Barry, 2008; Linacre and Geerts, 2002; Taylor and Alfaro, 2005). The structural 

learning algorithm Tree Augmented Naïve Bayes [TAN] was implemented to define the links 

between Ti, altitude, and provinces; Ti was chosen as the target variable. The TAN algorithm adds 

the required links between variables to predict the target variable from data; and because of using 

Bayesian inference, the direction of links between two variables is irrelevant (Friedman et al., 

1997; Norsys, 2018; Sucar, 2015c). Lara-Estrada et al. (2018) used the same approach to infer 
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relative humidity using other climate variables as a proxy. The data of altitude and Ti were 

extracted from the Worldclim dataset at 1 km of spatial resolution for the coffee areas (Hijmans 

et al., 2005). The coffee map includes information on Provinces (CATIE and MAGFOR, 2012).   

    

Figure 20. Shade model: estimation of the air temperature suitability for Coffee arabica L. under 

shaded and unshaded conditions. Unshaded condition [white circle]: Ti is the mean air 

temperature [°C] at full sun conditions, and S is the suitability score of Ti for coffee [0-100%, where 

100% is excellent suitability] according to Lara-Estrada et al., (2017). Shaded condition [gray 

circle]: Shr is the shade level required [%] to a given Ti, the Tr is the air temperature reduction [°C] 

due to the cooling effect of the shade, and S' is the suitability score [0-100%] of Ti considering Tr. 

In case the Ti values are unknown, the altitude [A] and Provinces [D] can be used to estimate Ti. 

Parameters and structures for the variables in circles were defined using the functions in Table 

10; variables in rectangles were learned from data using machine learning algorithms.  

Variable discretization. First, the maximum and minimum for each variable were estimated. 

For required shade, temperature reduction and air temperature suitability with and without 

shade, the functions in Table 10 were used. In the case of altitude, provinces, and Ti, the values 

from the corresponding datasets were used (CATIE and MAGFOR, 2012; Hijmans et al., 2005). 

Then, an equal state size for each variable was determined, considering agronomical and practical 

factors (Marcot et al., 2006). For example, shade values less than 10% are similar to the error of 

measurement (Bellow and Nair, 2003), and difficult to track or implement in reality (by shade 

pruning). Therefore a range of 10 % was used as the breakpoint for shade. In the case of altitude, 

changes of 100 m depict the environmental lapse rate (Blandford et al., 2008; Hidalgo et al., 2017) 

and are used by the coffee practitioners to describe the land features (Descroix and Wintgens, 

2004; ICAFE-CICAFE, 2011; Pineda, 2001). 

Conditional probability relationships [parameters]. For variables with a built-in-function, the 

function was used to estimate each variable’s conditional probability table using the feature 

“equation to table” in Netica (Norsys, 2018). For altitude, provinces, and Ti, the dataset created 

from Hijmans et al., (2005) and CATIE and MAGFOR (2012) were used to implement the Bayesian 

Unshaded

Shaded 

Temperature suitability functionsTi

S S

Shr

Tr

A

D
Structure and parameters based on

Learning algorithms

Suitability functions
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Counting—Learning Algorithm and learn the conditional probability tables. This algorithm 

allows a variable to move from an initial ignorance [no parameters] to a set of conditional 

probabilities with their attached level of confidence [experience], based on the occurrence of each 

possible variable state in the dataset (Spiegelhalter et al., 1993). Once, all the parameters were 

learned by the model; it was compiled and ready to use [Figure 21A].  

Model usage. Building the shade model in BN facilitate to us its integration to other BN 

models introduced in this document. Also, BN gives to users the opportunity to conduct inference 

considering data uncertainty, which we found particularly relevant for agricultural planning 

(Aguilera et al., 2011; Lara-Estrada et al., 2018; Uusitalo, 2007). So, we can enter as inputs data 

ranges, Gaussian distributions [mean ± standard deviation] or set of impossibilities for altitude 

or Ti or both to infer the Shr, S and S’ (Lara-Estrada et al., 2017; Norsys, 2018). For example, if one 

enters the exact value of Ti of a given location [no uncertainty] to the model, the model is going 

to infer the rest of unknown variables [Figure 21B]. On the other hand, if one does not know the 

exact value of Ti, by entering to the model the approximate altitude range and provinces 

information, the model infers first the Ti and then the Shr, S and S’ [Figure 21C].  

 

Figure 21. The shade model. A) Model compiled and ready to use; the displayed values indicated 

the prior values for the coffee regions in Nicaragua; Provinces indicates the share of coffee areas. 

Estimating the required shade and temperature suitability by entering B) temperature values and 

C) altitude and province data. S: temperature suitability under unshaded conditions 

[environment], and S’: temperature suitability under the canopy of trees [cooling effect of trees]. 

In B and C, temperature reduction and altitude were modified for visual purposes, but the 

functionality and variables states remain internally as A.  

A B

C

Ti = 20 °C

Altitude and Province are known

Shade model
Altitude (m.a.s.l.)

1809 to 1901
1716 to 1809
1597 to 1716
1478 to 1597
1375 to 1478
1271 to 1375
1190 to 1271
1108 to 1190
1028 to 1108
949 to 1028
862 to 949
775 to 862
697 to 775
620 to 697
551 to 620
483 to 551
420 to 483
357 to 420
313 to 357
269 to 313
184 to 269
100 to 184

0.44
0.17
0.47
1.07
2.25
4.63
5.42
6.57
9.50
10.4
12.0
10.4
9.28
8.26
6.57
5.03
3.35
1.78
0.81
0.72
0.56
0.37

884 ± 290

Temperature reduction (°C)

0
0.01 to 0.5
0.5 to 1
1 to 1.5
1.5 to 2
2 to 2.5
2.5 to 3
3 to 3.5
3.5 to 4

28.8
1.60
10.0
10.9
11.1
9.70
8.40
6.60
12.8

1.56 ± 1.3
Provinces

Matagalpa
Jinotega
NuevaSegovia
Madriz
Managua
Boaco
Esteli
Carazo
Masaya
RAAN
Granada
Chinandega
RAAS
Rivas
Leon

32.7
26.9
12.9
8.56
4.02
3.11
2.96
2.93
2.80
1.04
0.80
0.58
0.27
0.27
0.15

S

0 to 10
10 to 20
20 to 30
30 to 40
40 to 50
50 to 60
60 to 70
70 to 80
80 to 90
90 to 100

   0
   0

0.44
0.46
2.74
4.32
7.54
11.8
18.0
54.7

84.9 ± 15

Annual Mean Temp.(°C) 

16.5 to 18
18 to 19
19 to 20
20 to 21
21 to 22
22 to 23
23 to 24
24 to 25
25 to 26.8

1.24
4.85
11.0
22.4
22.9
18.4
12.2
5.97
1.06

21.5 ± 1.7

Shade required (%)

0 to 10
10 to 20
20 to 30
30 to 40
40 to 50
50 to 60
60 to 70
70 to 80
80 to 90

28.8
8.53
9.76
9.70
9.93
7.85
7.57
5.32
12.5

36.9 ± 29

S´

0 to 10
10 to 20
20 to 30
30 to 40
40 to 50
50 to 60
60 to 70
70 to 80
80 to 90
90 to 100

   0
   0
   0
   0
   0
   0

0.15
0.84
2.13
96.9

94.6 ± 3.9

Annual Mean Temp.(°C) 

16.5 to 18
18 to 19
19 to 20
20 to 21
21 to 22
22 to 23
23 to 24
24 to 25
25 to 26.8

   0
   0
   0

 100
   0
   0
   0
   0
   0

20

S

0 to 10
10 to 20
20 to 30
30 to 40
40 to 50
50 to 60
60 to 70
70 to 80
80 to 90
90 to 100

   0
   0
   0
   0
   0
   0
   0
   0
   0

 100

100 ± 0

S´

0 to 10
10 to 20
20 to 30
30 to 40
40 to 50
50 to 60
60 to 70
70 to 80
80 to 90
90 to 100

   0
   0
   0
   0
   0
   0
   0
   0
   0

 100

100 ± 0

Provinces

Jinotega
Matagalpa
NuevaSegovia
Madriz
Esteli
Boaco
Leon
Managua
Rivas
RAAS
other-

34.0
32.3
13.8
12.9
5.54
0.80
.079
.071
.071
.071
0.36

Temperature reduction (°C)

Shade required (%)

0 to 10
10 to 20
20 to 30
30 to 40
40 to 50
50 to 60
60 to 70
70 to 80
80 to 90

 100
   0
   0
   0
   0
   0
   0
   0
   0

0 ± 0

Altitude (m.a.s.l.)

1809 to 1901
1375 to 1478
1271 to 1375
1190 to 1271
1108 to 1190
1028 to 1108
949 to 1028
862 to 949
775 to 862
100 to 184
other-

.008
0.24
3.29
9.58
13.2
26.0
30.7
15.8
0.99
.008
0.10

1050 ± 120

Annual Mean Temp.(°C) 

16.5 to 18
18 to 19
19 to 20
20 to 21
21 to 22
22 to 23
23 to 24
24 to 25
25 to 26.8

.005

.005

.005
2.14
80.6
17.2
.028
.005
.005

21.65 ± 0.51

S

0 to 10
10 to 20
20 to 30
30 to 40
40 to 50
50 to 60
60 to 70
70 to 80
80 to 90
90 to 100

   0
   0

.002

.002

.003

.005

.019
6.95
28.7
64.4

90.7 ± 6.9

S´

0 to 10
10 to 20
20 to 30
30 to 40
40 to 50
50 to 60
60 to 70
70 to 80
80 to 90
90 to 100

   0
   0
   0
   0
   0
   0

 0 +
.004
.005
 100

95 ± 2.9

Provinces

Jinotega
Esteli
Boaco
Managua
Madriz
NuevaSegovia
Matagalpa
Leon
Rivas
RAAS
other-

 100
   0
   0
   0
   0
   0
   0
   0
   0
   0
   0

Temperature reduction (°C)

Shade required (%)

0 to 10
10 to 20
20 to 30
30 to 40
40 to 50
50 to 60
60 to 70
70 to 80
80 to 90

0.98
0.89
26.3
35.5
23.0
7.49
5.75
.013
.023

37.4 ± 12

Altitude (m.a.s.l.)

1716 to 1809
1597 to 1716
1478 to 1597
1375 to 1478
1271 to 1375
1190 to 1271
1108 to 1190
1028 to 1108
949 to 1028
775 to 862
other-

   0
   0
   0
   0
   0
   0
   0
   0
   0

 100
   0

819 ± 25
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The model assumes that there is no need of shading at or less 20°C [100% environmental air 

suitability], and the maximum air temperature reduction is 4°C at 90% of shading. We 

acknowledge the model does not consider extensively the possible factors that influence the air 

temperature under shade conditions (Adams, 2010; Lin and Lin, 2010), but it considers the 

potential of the shade to reduce air temperature according to coffee literature for the region. As 

we will see, the model has very good performance inferring the shade level.   

5.3.2. Model evaluation  

We evaluated the model by testing its accuracy to predict the air temperature [Ti] from 

altitude and province information and identifying the variables have the higher influence over 

the inference of the required shade levels [Shr].  

Inferring the Ti using altitude and province information: The spherical payoff metric was 

calculated to evaluate the model performance inferring Ti based on altitude and provinces 

information. The results indicate a spherical payoff of 0.8 [metric scores from 0 to 1, where 1 is 

the best performance] (Marcot, 2012; Norsys, 2018), which shows a very good model’s 

performance considering the combined effect of latitude, longitude, and altitude inside a 

province (Adams, 2010).  

The most influential variables over Shr. A sensitivity analysis using the Variance Reduction (VR) 

metric over Shr was conducted to identify the parent variables with the highest influence on it. 

The higher the VR score of X over Y, the higher the reduction of the variance in Y due to X (Marcot, 

2012; Norsys, 2018). The results show the mean air temperature [Ti] as the variable with the 

highest VR [94%], then altitude [81%] and provinces [30%]. These ranking were expected since 

the Shr is calculated based on Ti, and Ti is more affected in the regions by altitudinal changes than 

provinces [low changes in latitude and longitude, see Figure 17]. However, the ranking reveals 

which variable should be prioritized for better inference of Shr.  

5.3.3. Observed vs. inferred shade values  

Based on the location of the actual coffee plantations [Coffee arabica L. var. Caturra] from the 

dataset of Lara-Estrada (2005), we used the shade model to infer the required shade level [Shr] 

and temperature suitability under unshaded and shaded conditions [S and S’, respectively] 

[Figure 22]. The estimated shade corresponds to the expected value, which is the weighted mean 

value of the states [shade levels] per their probability of occurrence (Norsys, 2018).  

The results from comparing the S and S’ for coffee depicts the increase in air temperature 

suitability for coffee due to shading [Figure 22]. This supports the principle that shade trees add 
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layers of suitability to the coffee lands, in our case to the air temperature suitability 

[microclimate]; and offers a clear illustration of the potential of shading as adaptation practice 

under climate change conditions (Vaast et al., 2016).   

 

  

Figure 22. Observed and estimated shade levels, and the air temperature suitability with and 

without shade conditions [S’ and S, respectively]. Observed shade from Lara-Estrada (2005). 

Temperature values from Hijmans (2005) were used to estimate the S and S’. Optimal air 

temperature for Coffea arabica L. is 20 °C (Descroix and Snoeck, 2004). Error bars indicate standard 

error.   

The comparison of the estimated and observed shade indicates a close agreement between 

their values at higher and lower air temperature conditions [Ti ≥22 °C and Ti ≤ 19 °C, respectively; 

whose corresponds to low and high altitudes, respectively] than under optimal ranges [19 °C > Ti 

< 22 °C]. Some farmers use higher shade levels than the coffee plantation requires at locations 

with optimal Ti [Figure 22]. As we addressed, these difference and pattern of shade usage are due 

to different biophysical and socioeconomic conditions of coffee farms [see Section 5.2]. Below the 

22 °C, we did not observe coffee plantations using shade levels below the estimated shade values; 

and equal or above the 22 °C, the observed shade values are slightly higher [mean over shading 

< 5% shading]. In general, in both situations, coffee plantations use the required or over the 

required shade levels. So, in practice, the estimated shade defines the minimum shade level that 

farmers should use to compensate for warmer air temperature in coffee plantations under 

warmer conditions [Figure 22]. 
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5.3.4. Required shade levels under climate change conditions in Nicaragua.  

Using the location of the coffee areas in Nicaragua and the expected temperature under 

climate change scenarios RCP4.5 at 2050 [See Section 3.2], the future required shade level at 1 km 

resolution was estimated using the shade model. Also, we calculated the air temperature 

suitability under shade [S’] and without shade [S] conditions. 

The results indicate the rising in temperature due to climate change will require an 

increment in the level of shade in coffee plantations. A generalized downgrade in the land 

suitability of coffee areas due to climate change is reported in Chapter 3 (Lara-Estrada et al., 2017). 

Under such conditions, adjustment in the shade level as a cooling strategy might play a key role 

as an adaptation strategy (Vaast et al., 2016). Here, our modeling results for the years 2000 and 

2050 [RCP 4.5] confirm the need for such adjustments in the shading [Figure 23]. As the changes 

in the temperature are gradual, we can expect a gradual increase in the shading as well, from 

lighter to dense levels [Figure 23, Table 11]. In general, for the year 2000 about the 36% of coffee 

areas required shade levels equal or above 60%; the area that requires such shading increase 

almost doubles to 67% for 2050 [Table 11]. Considering the observed tendencies for over-shading 

by farmers here, in practice, we could expect even higher shade levels that we report for medium 

shade levels. However, if we track the changes in the required shading between the two periods, 

the changes are higher. Looking at the matrix of change of the required shade levels in Table 11, 

from the 100% of coffee areas that required a shade level between 0–10% in 2000, only the 21.11% 

of those area will still require shading of 0-10%, and the 78.89% of the coffee areas will require 

higher shade levels by 2050; for coffee areas with higher required shade levels the tendency is 

worse [Table 11]. These results imply that farmers may have to implement changes in the 

diversity and composition of the shade component, passing to a more dominated-woody trees 

typologies to reach such higher shade levels [See the related text to the Figure 25B].  
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Table 11. The matrix of changes of the required shade levels [Shr] in coffee areas under conditions of 2000 

and 2050 [RCP 4.5] in Nicaragua. 

Shr [%] 
 

2000 

2050 [RCP 4.5] Total 

area  

[%, 2000] 
0 to 

10 

10 to 

20 

20 to 

30 

30 to 

40 

40 to 

50 

50 to 

60 

60 to 

70 

70 to 

80 

80 to 

90 

Changes in this direction → 

0 to 10 21.11* 7.13 19.17 28.24 20.42 3.46 0.48   22.14 

10 to 20  0.00 0.31 7.10 51.23 32.10 8.64 0.62  4.96 

20 to 30   0.00 1.39 11.98 42.53 37.50 5.03 1.56 8.83 

30 to 40    0.00 1.64 8.74 53.01 32.42 4.19 8.41 

40 to 50     0.14 1.70 16.17 48.23 33.76 10.80 

50 to 60      0.00 1.33 14.58 84.09 8.09 

60 to 70       0.32 1.42 98.26 9.70 

70 to 80        0.40 99.60 7.65 

80 to 90         100.00 19.41 

Total area  

[%, 2050] 
4.67 1.58 4.26 6.73 8.27 7.03 10.19 9.76 47.50 100.00 

* 100% of the areas required the corresponding shade level in 2000, and the bold value indicates the 

remaining amount of area under the same correspond level by 2050. 

 

 

Figure 23. Required shade levels [Shr] of coffee areas for the years 2000 and 2050 [RCP 4.5] in Nicaragua.  

2000 2050 RCP 4.5

Shr [%]
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Considering altitude, the required shade level will increase in average across the altitudinal 

ranges in the coffee areas by 23±14.76% in 2050 [Figure 24]. The highest increment [32 – 35%] in 

required shade occurs between 700 – 1100 m.a.s.l.; and for coffee areas with altitudes above 1100 

m.a.s.l. that did not need shading in 2000; they will need in the future. The lower increment in 

the required shading at lower altitudes is because such areas already had high shade levels in 

2000 [Figure 24B]. Hence, the margin to increase shading was small, and the cooling effect of 

shading was not enough to overcome the higher temperature; for this reason, the air temperature 

suitability under shading [S’] in 2050 is lower than in 2000 [Figure 24A].  

Comparing the suitability of air temperature under shaded and unshaded conditions [S’ and 

S respectively], we observed an upgrade in the air temperature suitability under shading in both 

periods: about 17% more in 2000 and 31% in 2050. The higher upgrades occur at lower altitudes. 

Therefore, the microclimatic regulation service that shade trees provide to coffee plantations adds 

a layer of climate suitability to the existing conditions; allowing farmers cultivate coffee under 

less temperature suitable conditions. To the best of our knowledge, there are not similar results 

quantifying the benefits of the cooling effect of shade in coffee plantations in Nicaragua or Latin 

America. Our results support the statement that trees in agroforestry systems might play a 

relevant role as adaptation strategy under warming conditions. In the next chapters, we integrate 

these results in a broader analysis that considers the interaction between coffee productivity, 

adaptation, and mitigation to climate change. 

 

Figure 24. Required shade levels [Shr] and air temperature suitability without and with shade [S 

and S’, respectively] for coffee areas in Nicaragua. A) Average values for the country, B) Required 

shade levels in 2000 and 2050. 
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5.4. Conclusions 

We introduced a new simple Bayesian network model to estimate the required shade in 

coffee plantations and evaluated the air temperature suitability for coffee with and without shade 

trees under uncertainty. From the comparison between observed and modeled shade values, we 

found the farmers tend to use higher shade levels than the required under optimal or close to 

optimal temperature conditions for coffee; and above and below the optimal range, the observed 

and modeled shade levels are similar. Therefore, in practice, the model defines the lower limit of 

the required shade level for coffee plantations.  

The results show that in future required shade levels will have to increase on current coffee 

areas in Nicaragua. The coffee areas that require dense shading [≥ 60%] in 2000 will need to 

increase about the double by 2050. The upgrade in the air temperature suitability under shading 

conditions gave a first quantification of the potential of shade trees in agroforestry systems as an 

adaptation strategy under climate change. Finally, we provide results and a simple tool [shade 

model] with potential usage in the farm planning or policy-making processes.   
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6. A NEW COFFEE TYPOLOGY TO ADDRESS 

SYNERGIES AND TRADEOFFS BETWEEN 

PRODUCTIVITY, ADAPTATION AND 

MITIGATION TO CLIMATE CHANGE IN 

COFFEE AGROFORESTRY SYSTEMS 

6.1. Introduction 

Agriculture faces multiple challenges, such as soil degradation, water scarcity, and market 

crises. Climate change is another challenge, which can also aggravate existing ones due to the 

expected changes in temperature, precipitation variability and increasing occurrences of extreme 

events (Eakin et al., 2005; Matson et al., 1997; Tilman et al., 2002; Valenzuela, 2016). Climate 

change is expected to impact the climate suitability of land for coffee cultivation in coffee 

producing countries (Chapter 3, Karmalkar et al., 2011). However, agriculture is not only 

impacted by climate change; it also has the potential to alleviate or increase the severity of climate 

change as well by releasing or sequestering Greenhouse Gases (Smith et al., 2014; Tubiello et al., 

2013). There are some agricultural systems like Coffee Agroforestry Systems [CAFS], with a high 

potential for crop adaptation and GHG mitigation to climate change (Matocha et al., 2012; Mbow 

et al., 2014a; Verchot et al., 2007).  

In CAFS, the perennial component is composed of the trees and coffee plants, which are a 

standing carbon stock and source for the organic matter to the soil, and defines the mitigation 

potential (Defrenet et al., 2016; Schmitt-Harsh et al., 2012; Segura et al., 2006; Verchot, 2005). As 

an adaptation strategy, the CAFS improve the resilience and sustainability of farms by providing 

goods and services such as income diversification [e.g., timber, fruits], soil condition 

improvements [e.g., soil fertility, erosion], and microclimate regulation by cooling temperature 

under the canopy’s trees [See Chapter 5] (Blanco and Aguilar, 2015; Camargo, 2010; Cerda et al., 

2017; Lin, 2007; Vaast et al., 2015). However, the presence and intensity of those services for 

adaptation or mitigation fluctuate according to the arrangement of the CAFS’ characteristics. 

These characteristics are related to the composition and structure of the perennial components 

and farming practices implemented, whose settings may provoke different levels of synergies 

and trade-off between coffee productivity, adaptation and mitigation objectives (Harvey et al., 

2014). However, the current coffee typologies are focused on objectives related to biodiversity 

conservation [shade trees composition and structure] or agricultural intensification [low, medium 
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and high inputs] (Haggar et al., 2011; Moguel and Toledo, 1999; Somarriba et al., 2004). So, we 

introduce new CAFS farming typology classification to address the synergies and tradeoffs 

between coffee productivity, the adaptation services, and carbon mitigation potential of CAFS 

under climate change.  

6.2. Methods 

6.2.1. Study area 

The study area corresponds to the coffee areas in Nicaragua [Figure 25]. The cultivation of 

coffee [Coffea arabica L.] began in Nicaragua in the 19th century in the Provinces of Carazo and 

Masaya in the Pacific Region (Charlip, 2003; Diaz, 2001). Then, farmers located at medium and 

high altitudes [> 600 m.a.s.l.] in the Northern Central Region started its cultivation where 

currently is the most important coffee zone in the country. The country has about 183,161 Mz 

[126,586 ha] under Coffea arabica L. and 805 Mz under Coffea canephora [Robusta in South-east zone] 

(CATIE and MAGFOR, 2012); the total country production was about 2.02 million qq [91,800 t] in 

2010 (ICO, 2015), and a farm’s productivity was on average of 10.6 qq Mz-1. About 96% of the 

national coffee plantations are under agroforestry systems (CATIE and MAGFOR, 2012). Central 

America expects to face a rising of temperature between 2 to 4 °C (Hidalgo et al., 2013; Karmalkar 

et al., 2011), and as we stated in Chapter 3, such changes represent a severe threat to coffee 

production. 

 

Figure 25. Map of coffee areas [green] of Nicaragua (CATIE and MAGFOR, 2012). 
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6.2.2. Data 

We used the survey dataset of Lara-Estrada (2005) to develop the PAM-typologies. The 

dataset includes farming annual maintenance practices, coffee yields, coffee plant density, 

diversity and abundance of shade trees, shade levels, and others [Table 12]. Based on these 

variables and additional data raised in a survey], a new set of variables related to production cost 

and income, and carbon content were estimated for the surveyed farms from Lara-Estrada (2005). 

Table 12. Surveyed variables from Lara-Estrada (2005) used in this study.  

Category   Variable 

Coffee plantation   Coordinates, altitude [m.a.s.l.] 

Farming practices  

  Application rates of fertilizers, herbicides, insecticides, and fungicides. 

Rates of coffee and shade tree pruning, manual weed control, and cultural 

control of coffee berry borer. 

Shade trees 
  Shade level [%], species richness [sampling plot (32 x 32 m), and tree 

density (trees Mz-1)] 

Coffee   Yields [qq Mz-1], plant density [plants Mz-1], and age [years] 

1 qq = 100 lb = 45.36 Kg. 1 Mz = 0.7026 ha. 

 

Maintenance cost and net income. The annual maintenance cost [variable production cost] and 

net income for coffee and musaceas were calculated using the corresponding variables from the 

dataset, reference local market prices and production costs [Table 13 and Table 14]. Incomes from 

timber or fruits produced by trees were not considered (Somarriba, 1992). The cost and income 

data were obtained from agronomists and other technical personnel of institutions related to the 

coffee production in Nicaragua [Table 13 and Table 14]. 
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Table 13. Equations utilized to estimate maintenance costs and net incomes. 

Equations 

Labor cost 𝐿 =∑𝑎𝑖 𝑟𝑖𝑐𝑖 

Where 𝐿 is the summation of the labor cost [US$ Mz-1] of each farming practice [i] implemented, 

which are the product of the number of applications per practice [𝑎𝑖], the man-day required per a 

given application [𝑟𝑖] and the cost per man-day [𝑐𝑖]. It used the average cost of man-day of US$ 6.04. 

 

Inputs cost 

[agrochemicals] 
𝐼 =∑𝑎𝑖 𝑑𝑖𝑐𝑖𝑖 + ℎ 

Where 𝐼 is the summation of the input cost [US$ Mz-1] of each farming practice [i] implemented –

coffee and musaceas inputs cost [𝑀𝑐], which are the product of the number of agrochemicals 

applications [𝑎𝑖], the agrochemical amount required per application [𝑑𝑖] and the cost of the input 

[𝑐𝑖𝑖], plus the harvesting and transport cost [ℎ]. The 𝑑𝑖 is the product of the crop plant density, the 

doses and cost of agrochemicals. 

 

Musaceas cost 𝑀𝑐  = 𝑚𝑏 ∗ 𝑚𝑐 

Where 𝑀𝑐 is the production cost [US$ Mz-1], and is the product of the number of bunch produced 

[𝑚𝑏] and the production cost per bunch [𝑚𝑐].  

 

Harvesting and transport ℎ = 𝑦 ∗ 𝑐ℎ 

Where ℎ𝑖 is the harvesting [picking] and transport cost of the coffee harvested [US$ Mz-1], which is 

the product of the yields [𝑦] [qq Mz-1] and the harvesting and transport cost [𝑐ℎ] [U$ qq-1].  

 

Maintenance cost 𝑀 = 𝐿 + 𝐼 

Where 𝑀 is the maintenance cost [US$ Mz-1], which is the summation of the labor [𝐿] and inputs 

costs [𝐼]. 

 

Coffee income 𝐶𝑖 = 𝑦 ∗ 𝑝𝑐 

Where 𝐶𝑖 is the coffee income [US$ Mz-1] due to green coffee bean sales, which is the product of 

obtained yields [𝑦] [qq Mz-1] and coffee prices [𝑝𝑐] [US$ qq-1] in the local market. With the exception 

of the ℎ, it assumed that the cost related to the coffee commercialization are included in the price 

(taxes and other services]. The coffee price was 114 US$ qq-1 corresponding to the average price paid 

to coffee producers in 2017 in Central America (ICO, 2018) 

  

Musaceas income 𝑀𝑖 = 𝑚𝑏 ∗ 𝑝𝑚 

Where 𝑀𝑖 is the income [US$ Mz-1] due to the musaceas commercialization [US$ Mz-1], and is the 

product of the number of bunch produced [𝑚𝑏] and the price per bunch at farm [𝑝𝑚]. The price was 

1.067 US$ bunch-1 [average price estimated from Garming et al., 2013]. A 1/3 of the total of musaceas 

[stems Mz-1] were considered productive. 

 

Total income  𝑇𝐼 = 𝐶𝑖 +𝑀𝑖 

Where 𝑇𝐼 is the total income [US$ Mz-1] resulting from the sales of coffee [𝐶𝑖] and musaceas [𝑀𝑖]. 

 

Net income [profit] 𝑁𝐼 = 𝑇𝐼 − 𝑀 

Where 𝑁𝐼 is the net income [US$ Mz-1] obtained from the difference of the total income [𝑇𝐼] and the 

maintenance cost [𝑀]. 

 

1 qq = 100 lb = 45.36 Kg. 1 Mz = 0.7026 ha.  
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Table 14. Labor and inputs parameters used to estimate maintenance cost. Labor values indicate the required 

man-days (MD) to conduct farming practices. 

Practices 

Labor per 

application 
Inputs cost per application 

Comments Labor 
Source 

Input costs 
Doses Source 

(MD Mz-1) Cost source 

Shade trees pruning 5 a, b      

Coffee pruning 3 c         
Maintenance, rock 'n' 

roll, capping 

Weed control 4 d         Manual 

Berry borer control 2 c         Pepena and graniteo 

Application Fungicides 2 a, b US$ 11.50 l-1 e 1 l mz-1 a   

Application Herbicides 2.5 d US$ 7.15 l-1 e 2 l mz-1 d 

Application Insecticides 2 a, b US$ 14.83 l-1 e 1 l mz-1 a   

Fertilization: NKP 2.5 a US$ 29.03 qq-1 a 1 onz plant-1 c 18-46-0 

Fertilization: Urea 2.5 a US$ 21.93 qq-1 a 1 onz plant-1 c Urea 46 % 

Fertilization: Foliar 2 b US$ 4.83 l-1 a 1.5 l mz-1 c   

Compost 4 a US$ 17.74 mz-1 a 1 applic. mz-1 c Ingredient cost 

Harvesting - - US$ 25.80 qq-1 a     Picking & transport  

Musaceas cost   US$ 0.425 bunch-1 f   Includes labor 

Sources: a = INTA, b = Personal communication with Raul Gutierrez [Coffee agronomist and farmer from 

Nicaragua], c = this study authors, d = Formunica S.A [Agrochemical company in Nicaragua], e = Personal 

communication with Walter Palma [Coffee agronomist from Nicaragua], f = according to Garming et al., 

(2013). It considered that 1/3 of the musaceas stems were productive during the year. 1 qq = 100 lb = 45.36 

Kg. 1 onz = 28.35 g. 1 Mz = 0.7026 ha. 

Carbon stock and fertilizer emissions. The perennial component is composed of the coffee plants 

and the shade trees in the coffee agroforestry systems. Musaceas [Musa spp.] are frequently found 

as temporary or permanent shade in coffee plantations in the Central American region (Garming 

et al., 2013; Staver et al., 2013). Even musaceas are not a real tree, they are considered as such in 

agroforestry because they provide services to the coffee plantation such as shading, wind 

protection, organic matter, and goods to farmers as a source of food and incomes (Alves et al., 

2015; Moguel and Toledo, 1999; Somarriba et al., 2004). However, the musaceas’ carbon storage 

capacity is much lower than woody trees (Somarriba et al., 2013). Hence, to capture the shading 

and carbon sequestration potential of the shade tree component, it was divided into woody trees 

and musaceas. The planting density of the shade trees [trees Mz-1] was calculated from reported 

data in Lara-Estrada (2005). Allometric equations and shoot/root ratios were employed to 

estimate the above and below ground biomass of coffee plants and shade trees [Table 15]. Then, 

the carbon content per area [Mg C Mz-1] was calculated using the corresponding planting density 

and conversion factors of biomass to carbon. For coffee and woody trees the default factor of 0.50 

(IPCC et al., 2003), and for musaceas 0.488 (Kamusingize et al., 2017) were used.  
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Table 15. Equations used to estimate the carbon stock of coffee plants, woody trees, and musaceas. 

Component Component Equation R2 Source 

Coffee AGB log10 𝐴𝐺𝐵 = −1.181 + 1.991 ∗  log10 𝑑0.15 0.93 Segura et al., (2006) 

BGB 𝐵𝐺𝐵 = 𝐴𝐺𝐵 ∗  0.9607  Drefrenet et al., (2016)* 

Woody trees AGB log10 𝐴𝐺𝐵 = −8.34 + 2.223 ∗  log10 𝑑𝑏ℎ1.35 0.93 Segura et al., (2006) 

BGB 𝐵𝐺𝐵 = 𝐸𝑥𝑝 [−1.0587 + 0.8836 ∗  ln 𝐴𝐺𝐵] 0.84 Cairns et al., (1997) 

Bananas ABGB 𝐴𝐵𝐺𝐵 = 0.0303 ∗ 𝑑𝑏ℎ1.35
2.1345 0.99 

Arifin (2001) cited by 

Hariah et al. (2001) 

AGB: Above Ground Biomass, BGB: Below Ground Biomass, ABGB: Above and Below Ground Biomass, 

d15: Diameter at 15 cm height, dbh1.35: Diameter at breast height [1.35 m]. * the 0.9607 was estimated from the 

root biomass share [49%] of the coffee total biomass [55 Mg ha-1] reported by Drefrenet et al., (2016). The 

diameter for coffee plants was 𝑑0.15= 5 cm. In woody trees the 𝑑𝑏ℎ1.35 = 26.49 cm for all the trees; the value 

was estimated from the reported tree diameters for shade coffee plantations in the dataset of the National 

Forest Inventory of Nicaragua (INAFOR, 2009).  

6.2.3. Creating the PAM-typologies 

The coffee agroforestry systems [CAFS] are complex and dynamic (Perfecto et al., 2007; Stacy 

M Philpott et al., 2008), because of the historical, socio-economic and biophysical conditions in 

the former and current coffee areas (Samper, 1999). Such complexity has been described in 

typologies to address a particular aspect or feature of the coffee system; some typologies describe 

the input intensification level usage by farmers [low, medium and high], or the source and type 

of inputs [organic or conventional], or the composition and structure of the tree component 

[multistrate, polyculture, monoculture, etc.](Haggar et al., 2011; Moguel and Toledo, 1999; 

Somarriba et al., 2004). Therefore, we created a typology that captures the features of the coffee 

systems considering coffee Productivity, Adaptation to climate change, and Mitigation [PAM] 

objectives; and help to discover the tradeoffs and synergies between coffee systems. In this study, 

we defined 1) productivity as the relation between the incomes generated for agricultural 

products and their production costs per unit of land; 2) adaptation as any practice that improve 

the sustainability of the coffee production under climate change, which includes incomes 

diversification [e.g., sales from musaceas] and improve the cultivation conditions for the coffee 

plants [e.g., cooling effect of shading]; and 3) mitigation as the carbon content storage in the 

perennial components of the CAFS compare to unshaded crop systems. Therefore, and 

adaptation practice may reduce the coffee yields but maintain or increase the productivity of the 

land; and therefore, sustain the coffee producers (Haggar and Schepp, 2012; Verchot, 2005) 

As the first step, the variables to depict the PAM features were selected. Based on literature 

and exploratory analysis [Pearson’s correlation and principal component analysis, Table-A 3] the 



90 

 

variables coffee yields [kg Mz-1] and annual maintenance costs [US$ Mz-1] for Productivity; the 

shade level [%] for Adaptation; and density of woody trees [trees Mz-1] and musaceas [stems Mz-

1] for Mitigation were selected. The annual maintenance cost is a proxy for farming intensification 

[sum of annual labor and input costs]. The shade of trees is the adaptation practice evaluated in 

this study [cooling effect] and is also an essential practice in the farming strategy of coffee 

producers [See Chapter 5]. The planting density of woody trees and musaceas depicts the 

difference in carbon stock potential and shading of the tree component.  

Second, using the selected variables a standard procedure to define farming typologies was 

conducted: a Principal Component Analysis [PCA] followed by hierarchical clustering analysis 

[Euclidean distance and Ward’s method] was conducted to define the new typologies (Sarstedt 

and Mooi, 2014). As a result of the clustering analysis over the farms of Lara-Estrada’s dataset, 

each farm was classified under one of the resulting typologies giving place to a new categorical 

variable “PAM-typology” in the dataset. An analysis of variance over the remaining variables 

was done using the PAM-typology as classification criteria to support the description of the 

typologies themselves (Salazar et al., 2018). The typologies were named, and their synergies and 

tradeoff to PAM described and discussed.  

6.3. Results and Discussion 

6.3.1. PAM-typologies 

We identified five PAM-typologies using a PCA and clustering analysis [Figure 26]. The first 

three principal components [PC] explain 90.3% of the variability of the variables. The PCA gave 

a general description of the interaction between variables. High shade levels are more closely 

linked to high densities of woody trees than to high density of musaceas. Higher yields are 

strongly related to higher maintenance cost. We, also, observed a negative effect between shading 

and the yields and maintenance cost [Figure 26].  
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Figure 26. Principal component and cluster analysis conducted to obtain the PAM-typology. A) 

Principal components 1 and 2 [71.8%]. B) Principal components 1 and 3 [61.1%]. The three PC 

sum 90.3%. C) the clustering analysis that identified the 5 typologies: IMW = Intensive 

management under Medium-dense shading of Woody trees; MDW = Medium-intensive 

management under Dense shading of Woody trees; LMM = Low-intensive management under 

Medium-slight shading of Musaceas; ISM = Intensive management under Slight shading of 

Musaceas; LMW = Low-intensive management under Medium-slight shading of Musaceas. 

Traditional, semi-intensive and intensive refer to the farming intensification level [annual crop 

maintenance: inputs and labor]. Musa and mixed shade refer to the type of shade trees 

predominant, being musaceas or musaceas + woody trees.   

The typologies were named as 1) Intensive management under Medium-dense shade of 

Woody trees [IMW], 2) Intensive management under Slight shade of Musaceas [ISM], 3) Medium-

intensive management under Dense shade of Woody trees [MDW], 4) Low-intensive 

management under Medium shade of Woody trees [LMW], and 5) Low intensive management 

under Medium-slight shade of Musaceas [LMM]. 

6.3.2. Synergies and tradeoff  

The PAM-typologies are intended to capture and display the synergies and tradeoff of the 

coffee systems. Therefore, by describing the typologies and comparing them, we revealed their 

productive potential, as well for adaptation and mitigation to climate change.  

Average values of biophysical and farming practices variables are displayed for each PAM-

typologies in Table 16.  
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Table 16. Mean values for surveyed and estimated variables per PAM-Typology.  

Variables Units 
PAM-Typologies 

ISM IMW MDW LMW LMM 

Altitude  m.a.s.l. 1092±173a 1007±61ab 1028±128a 923±171b 1024±254ab 

Air temperature °C 19.96±0.93c 20.15±0.35bc 20.56±0.67b 21.05±0.99a 20.08±1.19bc 

Coffee yield  qq Mz-1 30±50a 29±20a 17±50b 11±50c 7±20c 

Shade  % 17±11d 51±7ab 55±17a 38±18bc 32±23c 

Musaceas Stems Mz-1 164±121b 177±105b 109±98b 49±49c 408±143a 

Woody trees  Trees Mz-1 36±29c 145±49a 115±28a 72±43b 34±34c 

Maintenance cost US$ Mz-1 1291±182b 1502±183a 879±180c 586±284d 566±127d 

Tree spp. richness*  Spp. plot-1 2.33±1.07b 5.33±2.80a 3.11±1.91b 3.64±2.40ab 3.60±2.44ab 

Shade trees 

pruning 
Pruning rate 2.50±1.68b 3.83±2.40a 2.26±1.37b 1.09±0.61c 2.60±1.14ab 

Coffee pruning**   Pruning rate 1.67±0.51a 0.50±0.55b 0.68±0.58b 0.50±0.51b 0.40±0.55b 

Coffee plant 

density  
Plants Mz-1 3455±535ab 3900±352a 3655±752a 3082±706b 2478±1096c 

Granular fertilizer  Application rate 2.33±1.07b 3.83±1.60a 2.11±1.05b 1.36±1.43c 1±1c 

Pesticides Application rate 4±2.49a 4.83±2.48a 2.63±1.61b 2.45±2.22b 2±1.22b 

Labor usage MD Mz-1 42±14b 56±8a 37±11b 28±14c 35±11bc 

Input cost US$ Mz-1 1039±163a 1165±138a 655±160b 419±223c 355±110c 

Musaceas income US$ Mz-1 91±23b 108±33b 76±36b 34±23c 206±73a 

Net income US$ Mz-1 2214±490a 1856±232a 1077±495b 643±385c 412±336c 

Carbon stock  Mg C Mz-1 11±4c 26±6a 21±6b 14±6c 11±5c 

Fertilizer emissions  MgCO2e Mz-1 0.49±0.23b 1.05±0.52a 0.50±0.30b 0.23±0.26c 0.21±0.25c 

LUC emissions MgCO2e Mz-1 40±13d 94±23a 77±22b 52±20c 40±20cd 

Means with a common letter are not significantly different [p > 0.10] according to Fisher LSD test. The green 

color illustrates the rank of each typology for a particular variable. IMW = Intensive management under 

Medium-dense shading of Woody trees; ISM = Intensive management under Slight shading of Musaceas; 

MDW = Medium-intensive management under Dense shading of Woody trees; LMW = Low-intensive 

management under Medium-slight shading of Musaceas; LMM = Low-intensive management under 

Medium-slight shading of Musaceas. LUC emissions indicate the emissions in case of elimination of the 

coffee agroforestry system [Land Use Change]. Granular fertilizers: NPK and Urea. *plot = 1024 m2. ** 

Maintenance pruning [sanitaria]. 1 qq = 100 lb = 45.36 Kg. 1 Mz = 0.7026 ha. DM = man-day. 

 

The typologies are a mix of woody trees and musaceas; however, we use the terms “woody 

trees” or “musaceas” to indicate which of them is the most dominant considering the total tree 

density and carbon stock potential. Hence, it is possible the total dominance of one of them. Table 

17 displays the proportion of coffee plantations using a given shading system [base on tree spp. 

composition and vertical structure] per PAM-typology. The shade systems represent the 

composition (dominant species] and structure [strata] of the three component in agroforestry 

systems (Somarriba et al., 2004). Except for Inga spp. [corresponding to ~17% of farms] and 

Musaceas [~12%], most of the shading systems combine musaceas and woody tree species. We 

found that a given shade system is implemented for some of the PAM-typologies; so, a given 

coffee plantation using a given shade typology could change to another PAM-typology by 
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adjusting the composition of the perennial component, shading, and intensity of farming 

practices [Table 16 and Table 17]. 

Table 17. Agroforestry shade typologies in coffee plantations by PAM-typologies. The shade 

typologies reference the tree species composition and vertical structure [strata]*.  

Shade typology  
Survey 

[%] 

Strata 

[no.] 

PAM-typology [%] 

ISM IMW MDW LMW LMM 

Inga spp. 17.19 1 8.33 - 31.58 18.18 - 

Remnant forest 6.25 2 - 33.33 - 9.09 - 

Rustic 4.69 >3 - 16.67 - 9.09 - 

Multistrata polyculture 6.25 >3 8.33 - 10.53 - 20.00 

Inga spp. + Cordia + Musaceas 7.81 3 - - 5.26 18.18 - 

Inga spp. + Musaceas 40.63 2 25.00 33.33 52.63 45.45 20.00 

Musaceas + tree spp. 4.69 2 16.67 16.67 - - - 

Musaceas 12.50 1 41.67 - - - 60.00 

* The shade typology classification is included in the survey dataset Lara-Estrada (2005), and was defined 

considering Somarriba et al., (2004).   

Overall, the density of coffee plants and woody trees have a highly significant correlation to 

carbon stock [r = 0.36 and 0.98, respectively; Table-A 3]. So, the typologies dominated by woody 

trees IMW, MDW, and LMW have the highest carbon stock (Häger, 2012), and the woody trees 

component represent the highest carbon share of the total stock. In case of musaceas based-

typologies ISM and LMM, the coffee plants represent similar or higher carbon content than the 

woody trees, and together sum more than 75% of the stock [Figure 27A], and only in LMM the 

musaceas reach the 25 % of the total carbon stock, otherwise remains equal or under 10% of the 

total stock [Figure 27B]. As we will explain next, there is a direct correlation between altitude, 

shade level, and carbon content. 

 

Figure 27. Carbon stock content by PAM-typology. A) Carbon stock values of coffee plants, 

musaceas and woody trees. B) Carbon stock share. Error bars indicate standard error. Means with 

a common letter are not significantly different [p > 0.10] according to the Fisher LSD test. 

A B
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There is a negative correlation between the shade level and altitude. At lower altitudes, 

farmers use higher shade levels to alleviate warming conditions for coffee and consequently 

enhance the productive potential – see Chapter 5 (Muschler, 2004). Even though altitude and air 

temperature were excluded in the creation of the PAM-typologies, their effect was incorporated 

by the shade level and tree densities [Table 16 and Table-A 3]. Farmers tended to use the ISM at 

medium-higher altitude [19.96 ± 0.93 °C], the IMW and MDW at medium-lower altitude [20.15 ± 

0.35 and 20.56 ± 0.67 °C, respectively], and LMW at a lower altitude [21.05 ± 0.99 °C]. In the case 

of LMM, it was found at different elevations [20.08 ± 1.19 °C] [Figure 28A]. Therefore, farmers 

that due to land suitability [air temperature suitability] or farming strategy reasons use a higher 

proportion of musaceas at higher altitudes or higher proportion woody trees at medium-lower 

altitudes [Figure 28B] indirectly provoke those coffee plantations at lower and medium altitudes 

have higher carbon stock and mitigation potential than those located at higher altitudes. In this 

sense, the carbon stock is a side result of the shade levels [adaptation] used by the farmers’ 

farming strategy [productivity]; which in overall describes higher synergism between the three 

PAM-objectives in CAFS at medium-lower altitudes; and high synergism only for productivity 

and adaptation objectives but low for mitigation at higher altitudes. 

 

Figure 28. The interaction between shade levels, type of tree and altitude. A) Reported shade 

level, altitude and air temperature for the coffee plantations per PAM-typology. B) Trees density 

vs. shade levels: woody trees + musaceas = total planting density. Error bars indicate standard 

error. 

There is a close interaction between shading as farming practice and farming intensification 

level: a tradeoff between adaptation and productivity – see Chapter 5. Like other studies, we 

observed a high correlation between farming intensification and coffee yields; the higher the 

intensification level [inputs and labor], the higher the coffee yields; where the external-inputs 

[agrochemicals] have the highest influence on yields and net incomes [Figure 29 and Figure 30] 

A B
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(Castro-Tanzi et al., 2012; Meylan et al., 2013). Also, we observed a negative correlation between 

farming intensification and corresponding coffee yields with shading. For those PAM-typologies 

with medium and high farming intensification level, the shade seems diminishing the coffee 

yields: ISM and MDW have intermediate levels of labor and inputs usage, but the MDW’s higher 

shade level declined its yields in comparison to ISM’s lower shading and higher yields [Table 16]. 

Also, even the IMW have the highest farming intensification level; it have the same yields than 

ISM; IMW has medium-dense shading and ISM slight shading. In the case of the LMW and LMM, 

the low farming intensification level under medium-slight shading did not produce a rise in 

yields; so the limited usage of inputs and labor in farming practices [such as pest and diseases 

controls, fertilization rates, coffee pruning, and other] constrained the coffee yields [Figure 30]. 

Studies have reported this tradeoff between shading and yields (Beer et al., 1998; Haggar et al., 

2011; Perfecto et al., 2005; Vaast et al., 2016). In an experiment in Nicaragua, Haggar et al. (2011) 

observed that under the medium and high intensification treatments the shading seems to 

“suppress” the effect of high inputs over the coffee yields. However, such yield reduction is 

compensated with an increase in the longevity of coffee plantation and lower inter-annual yield 

fluctuations (Beer et al., 1998; Vaast et al., 2016). 

 
Figure 29. The interaction between maintenance cost [inputs and labor] and coffee yields. Dashed 

lines correspond to the mean values for coffee yields and annual maintenance cost. 
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Figure 30. Production cost, incomes, and profit of PAM-typologies. A) Total maintenance cost 

[Costs], income [Incomes] and Profit from coffee and musaceas [profit = net income = incomes-

cost]. B) Labor and external inputs [agrochemicals] cost [C], and the incomes [I] from coffee and 

musaceas sales. 

 

The required shade level can be reached under different proportions of musaceas and woody 

trees; higher shade levels are possible under the higher density of woody trees, and higher 

planting densities of woody trees produce higher carbon stock in the system [Figure 27]. Even if 

farmer required medium or dense shading at lower and medium altitudes [Figure 22]; we 

observed that many of them include musaceas as diversification and food security strategy 

(Albertin and Nair, 2004; Staver et al., 2013). On the other hand, at higher altitudes [with lower 

or optimal temperature] none or lower shading is required, typologies dominated by musaceas 

seems to be an option for some farmers under such conditions [Figure 28].  

Financial stability, preference, and risk aversion are some of the main factors that influence 

a farmer’ decision to implement a given farming practice (Babin, 2015; Kragt et al., 2017). 

Therefore, under market conditions of low coffee prices, the farmers’ willingness to invest 

decrease (Babin, 2015; Meylan et al., 2017). They will adjust their farming practices [maintenance 

cost] to the expected prices [incomes]; this adjustment might imply reductions in the number of 

inputs and labor; and increasing the shade level to reduce the coffee plants’ demand of nutrient 

(Beer et al., 1998; Vaast et al., 2016).  

Even farmers can implement technical adjustments in the coffee system to increase the PAM-

synergism, technical and financial support will be required in a farming planning setting to 

integrate such objectives the farming strategies of coffee producers; particularly, to promote 

mitigation practices [increase carbon stock or reduce the greenhouse gases emission]. The efforts 

to incentive farmers to implement mitigation practices using financial schemes have had low 

A B
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success in the agriculture, in part for the high transactional cost and conceptual constraints in 

practice (Siedenburg et al., 2012; Streck et al., 2012). 

Coffee agroforestry systems with high tree species richness have a significant higher value 

for fauna and flora conservation than open sun or mono-shade systems (McNeely, 2004). 

Functional species, i.e., dispersers and pollinators, like bees and bats are beneficiated of the 

provision of food and shelter in such diverse shade tree systems (Jha and Vandermeer, 2010; 

Medina et al., 2007). In this study, the carbon content of woody trees was positively correlated to 

tree species richness [r=0.40, p=0.001]. So, systems with a high diversity of trees species tend to 

favor high carbon stock, which denotes synergism between mitigation and conservation 

objectives (Häger, 2012; Richards and Méndez, 2014). This is the case of the typologies IMW, 

LMW and LMM that report the highest number of species [Table 16].  

Addressing the synergies and tradeoffs between the PAM objectives in the coffee 

agroforestry implies considering aspects that farmers evaluate to shape their farming strategies. 

So, in Figure 31, we created an idealized graphical representation to help to address the 

discussion over PAM objectives. In the figure, we assume the shading is the required shade level 

for the coffee plantation [which certainly might not be the case]; so, the adaptation axis refers to 

the intensity in the use of musaceas [planting density] as a diversification and food security 

strategy (Mbow et al., 2014b; Souza et al., 2010). The potential for biodiversity conservation is also 

included as the fourth objective. In general, the IMW typology displays the highest synergy 

considering the PAM and conservation objectives. Then, the ISM offers high synergy between 

productivity and adaptation objectives, but low for mitigation and conservation. However, as we 

discuss previously, some of the typologies are more frequent at given conditions than others; so, 

the land suitability conditions[climate and soil] might trigger the usage of certain farming 

practices according to the farmers' priorities at given locations.  
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Figure 31. Graphical representation of synergies and tradeoffs between productivity, adaptation, 

and mitigation of the PAM-typologies. It assumed the required temperature reduction due to 

shading is optimal in each typology; so the adaptation axis represents the income of musaceas as 

a diversification strategy for climate change adaptation and food security. Tree spp. is a 

conservation indicator, the greater tree spp., the greater the potential for conservation. 

 

6.4. Conclusions 

The new typologies introduced in this study provide a pathway to address the synergies and 

tradeoffs between productivity, adaptation and mitigation objectives in coffee agroforestry 

systems. Each typology depicts particular biophysical conditions of the coffee plantation and 

socioeconomic situation of farmers; where land productivity and food security, and adaptation 

to climate change are the priority objectives that shape the farmers’ farming strategy: typology 

(Lee, 2017; Mbow et al., 2014b). In this sense, the shade is a pivotal element in the interaction 

between productivity, adaptation and mitigation objectives. However the composition and 

abundance of shade trees are influenced by altitude; so, the typology dominated by woody trees 

IMW presented the highest synergies considering productivity, adaptation, and mitigation, and 

conservation at middle altitudes; and typologies dominated by musaceas present higher 

synergies considering only productivity and adaptation at higher altitudes. So, the potential of 

the coffee systems to reach higher synergism level between PAM objectives is conditioned for the 

land limitations and the technical response of farmers to deal with such limitations. In conclusion, 

The PAM-typologies can help farmers, agronomist and others decision-makers to define farming 

planning strategies or policies oriented to increase the resilience of coffee areas in Nicaragua. 
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6.5. Appendices VI 

Table-A 3. Pearson’s correlation coefficient and significance values (only p < 0.1]. 

Coefficient\significance  A B C D E F G H I J K L M N Ñ O P Q R S T U V W X Z 

Altitude A 1 0.000 0.059 0.024 0.057 0.404 0.670 0.938 0.050 0.251 0.099 0.749 0.029 0.970 0.011 0.049 0.660 0.123 0.061 0.059 0.265 0.026 0.240 0.300 0.746 0.137 

Air temperature B -0.89 1 0.012 0.002 0.023 0.389 0.132 0.247 0.065 0.059 0.090 0.909 0.011 0.231 0.000 0.006 0.186 0.035 0.012 0.010 0.339 0.006 0.318 0.156 0.552 0.265 

Coffee yield C 0.23 -0.31 1 0.000 0.042 0.475 0.965 0.725 0.304 0.104 0.111 0.007 0.001 0.005 0.001 0.000 0.448 0.000 0.000 0.000 0.396 0.001 0.382 0.316 0.374 0.533 

Maintenance cost D 0.28 -0.38 0.87 1 0.015 0.895 0.481 0.511 0.515 0.000 0.065 0.000 0.000 0.000 0.000 0.000 0.982 0.000 0.000 0.000 0.749 0.000 0.778 0.809 0.184 0.295 

Shade E -0.23 0.28 -0.25 -0.30 1 0.000 0.467 0.242 0.046 0.615 0.082 0.646 0.162 0.022 0.065 0.020 0.605 0.094 0.046 0.040 0.000 0.388 0.000 0.211 0.565 0.718 

Woody trees F -0.11 0.11 -0.09 -0.02 0.57 1 0.046 0.179 0.015 0.311 0.072 0.131 0.616 0.774 0.463 0.725 0.361 0.264 0.488 0.410 0.000 0.221 0.000 0.013 0.030 0.060 

Musaceas G 0.05 -0.19 -0.01 0.09 -0.09 -0.25 1 0.000 0.554 0.000 0.037 0.973 0.692 0.858 0.111 0.680 0.000 0.813 0.964 0.675 0.298 0.460 0.349 0.042 0.011 0.147 

Total tree density H 0.01 -0.15 -0.05 0.08 0.15 0.17 0.91 1 0.104 0.000 0.180 0.502 0.846 0.953 0.052 0.789 0.000 0.815 0.731 0.941 0.024 0.203 0.018 0.314 0.103 0.498 

Tree spp. richness I -0.24 0.23 -0.13 -0.08 0.25 0.30 0.08 0.21 1 0.48 0.929 0.962 0.732 0.113 0.499 0.483 0.965 0.313 0.303 0.344 0.001 0.887 0.002 0.374 0.133 0.671 

Shade trees pruning J 0.14 -0.23 0.20 0.44 -0.06 0.13 0.48 0.54 0.09 1 0.001 0.102 0.002 0.597 0.000 0.007 0.004 0.424 0.104 0.064 0.074 0.000 0.064 0.215 0.304 0.975 

Coffee pruning K 0.20 -0.21 0.20 0.23 -0.21 -0.23 0.26 0.17 0.01 0.39 1 0.382 0.917 0.437 0.022 0.133 0.115 0.125 0.110 0.082 0.250 0.590 0.216 0.563 0.374 0.235 

Coffee plant density L -0.04 -0.01 0.33 0.44 -0.06 0.19 0.00 0.09 -0.01 0.20 0.11 1 0.048 0.012 0.017 0.000 0.509 0.042 0.006 0.006 0.003 0.001 0.003 0.918 0.434 0.150 

Granular fertilizer M 0.27 -0.31 0.41 0.73 -0.17 0.06 -0.05 -0.03 -0.04 0.37 0.01 0.24 1 0.001 0.000 0.000 0.673 0.083 0.001 0.001 0.394 0.000 0.448 0.639 0.141 0.805 

Pesticides N 0.01 -0.15 0.34 0.54 -0.28 0.04 -0.02 -0.01 -0.20 0.07 0.10 0.31 0.40 1 0.000 0.000 0.774 0.082 0.004 0.005 0.454 0.003 0.395 0.722 0.013 0.127 

Labor usage Ñ 0.31 -0.42 0.40 0.72 -0.23 0.09 0.20 0.24 -0.09 0.71 0.28 0.29 0.68 0.53 1 0.000 0.235 0.080 0.001 0.001 0.227 0.000 0.215 0.830 0.165 0.373 

Input cost O 0.24 -0.33 0.94 0.98 -0.28 -0.05 0.05 0.03 -0.09 0.33 0.19 0.43 0.67 0.48 0.59 1 0.777 0.000 0.000 0.000 0.951 0.000 0.906 0.656 0.208 0.305 

Musaceas income P 0.06 -0.19 -0.11 0.00 0.08 -0.13 1.00 0.93 -0.01 0.41 0.23 -0.10 -0.06 -0.04 0.17 -0.04 1 0.605 0.453 0.726 0.930 0.757 0.925 0.156 0.298 0.262 

Net income Q 0.19 -0.26 0.97 0.74 -0.21 -0.14 0.03 -0.03 -0.13 0.10 0.19 0.25 0.21 0.21 0.22 0.84 -0.08 1 0.000 0.000 0.172 0.084 0.164 0.250 0.676 0.622 

Coffee incomes R 0.23 -0.31 1.00 0.88 -0.25 -0.09 -0.01 -0.04 -0.13 0.20 0.20 0.33 0.41 0.34 0.40 0.94 -0.11 0.97 1 0.000 0.412 0.001 0.398 0.312 0.369 0.518 

Total income S 0.23 -0.32 1.00 0.88 -0.25 -0.11 0.05 0.01 -0.12 0.23 0.21 0.33 0.41 0.34 0.41 0.94 -0.05 0.97 1.00 1 0.396 0.001 0.378 0.368 0.445 0.472 

Carbon stock T -0.14 0.12 -0.11 0.04 0.49 0.98 -0.13 0.28 0.40 0.22 -0.14 0.36 0.11 0.09 0.15 -0.01 -0.01 -0.17 -0.10 -0.11 1 0.067 0.000 0.043 0.043 0.142 

Fertilizer emissions U 0.27 -0.34 0.40 0.73 -0.11 0.16 0.09 0.16 0.02 0.53 0.07 0.41 0.91 0.36 0.73 0.65 0.05 0.21 0.40 0.41 0.23 1 0.079 0.307 0.714 0.351 

LUC emissions V -0.15 0.13 -0.11 0.04 0.50 0.98 -0.12 0.30 0.37 0.23 -0.15 0.36 0.09 0.11 0.16 -0.02 -0.01 -0.17 -0.11 -0.11 1.00 0.22 1 0.051 0.055 0.164 

Farm size W 0.13 -0.18 0.12 0.03 0.16 0.31 -0.26 -0.13 -0.11 -0.15 -0.07 -0.01 -0.06 -0.04 -0.03 0.06 -0.21 0.14 0.13 0.11 0.25 -0.13 0.24 1 0.000 0.000 

Coffee area size X 0.04 -0.08 0.11 0.16 0.07 0.27 -0.32 -0.21 -0.19 -0.13 -0.11 0.10 0.18 0.30 0.17 0.16 -0.15 0.05 0.11 0.10 0.25 0.05 0.24 0.73 1 0.006 

coffee age Z 0.18 -0.14 -0.08 -0.13 0.05 0.24 -0.18 -0.09 0.05 0.00 0.15 -0.18 -0.03 -0.19 -0.11 -0.13 -0.16 -0.06 -0.08 -0.09 0.18 -0.12 0.17 0.42 0.33 1 

  A B C D E F G H I J K L M N Ñ O P Q R S T U V W X Z 
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7. EXPLORING THE SYNERGIES AND 

TRADEOFFS BETWEEN PRODUCTIVITY, 

ADAPTATION AND MITIGATION TO 

CLIMATE CHANGE OBJECTIVES IN COFFEE 

AGROFORESTRY SYSTEMS 

7.1. Introduction  

A common strategy to analysis coffee systems is classifying them according to some 

particular characteristics or objectives in farm typology systems; so, stakeholders can observe the 

differences and similarities between coffee systems and explore the impacts of given factors over 

the farms typologies (Haggar et al., 2011; Schnabel et al., 2017). Some farm typologies refer to the 

type of inputs used in the systems [convention and organic] or diversity and structure of shade 

component [polyculture, rustic, commercial, others] (Meylan et al., 2013; Moguel and Toledo, 

1999; Somarriba et al., 2004). The description of each typology is commonly depicted using mean 

values obtained from a traditional quantitative or qualitative analysis (Salazar et al., 2018; 

Sarstedt and Mooi, 2014). 

Climate change is a current concern for the coffee sector, particularly for coffee producer 

countries. Half of the optimal coffee areas will downgrade to moderate or marginal land 

suitability due to climate change in the Central American region by 2050 [Chapter 3]. 

Agroforestry has been identified and promoted as an adaptation option to alleviate the impacts 

of climate change; the shade of trees and goods improve the coffee plantation’s microclimate, the 

income diversification, and food security [Chapter 5]; also, agroforestry has a high potential for 

carbon sequestration in their perennial component [trees and coffee plants](Mbow et al., 2014b; 

Verchot et al., 2007). However, the agroforestry coffee systems are diverse in composition and 

structure of the tree component, where the implemented shade levels respond to the local air 

temperature and farmer’s strategy [Chapter 5].  

The coffee farmers’ farming strategy is defined considering their preferences, socioeconomic 

situations, the coffee plantation productive state, and land suitability conditions; as results of the 

interaction of these multiples factors the coffee agroforestry systems might experience a range of 

tradeoffs and synergies considering productivity, adaptation and mitigation objectives (Harvey 

et al., 2014). In Chapter 6, we introduced a new coffee typology system  to depict the potential 

of agroforestry systems for Productivity, Adaptation and Mitigation to climate change [PAM] in 
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Nicaragua. So, we created a Bayesian network model based on the PAM-typologies to support 

the examination and selection of farming strategies [typologies] under current and climate 

change conditions.    

7.2. Methods 

7.2.1. Modeling the PAM-Typologies 

Model structure. The variables that were used to create the PAM-typologies and the resulting 

PAM-typology were considered as “core variables” in the modeling; over which a second-layer 

of variables were added. For each of the core variables, a node was created, and the conditional 

dependencies portrayed as links were created from the dataset using the TAN algorithm [see 

Section 4.2.6](Friedman et al., 1997). Then, the discretization of each variable was obtained from 

a mean separation test using the PAM-typology as classification variable and the coffee yields, 

maintenance cost, shade levels, and density of woody trees and musaceas as dependent variables. 

Then, the middle distance between means was estimated to obtain the breakpoints between 

variables’ states.  

A second-layer of variables were added to the model to enhance the capability of the model 

to provide relevant information for decision-making. The second-layer variables were carbon 

stock [Mg C Mz-1], net income [US$ Mz-1], coffee plant density [plant Mz-1], and tree richness [tree 

species plot-1, plot sampling size: 1,024 m2]. The carbon stock is an indicator of the CAFS’ potential 

to mitigate CC (Schmitt-Harsh et al., 2012), and facilitate estimation of possible incomes from 

carbon markets (Atangana et al., 2014). The net income evaluates the productivity of the farming 

system. The coffee plant density provided agronomical information and is linked to yields and 

carbon content (Schmitt-Harsh et al., 2012; Toledo and Barros, 1999); and the species richness of 

the tree component is a proxy variable to describe the potential for biodiversity conservation of 

the system (Somarriba et al., 2004). The parents and discretization were defined for each one of 

these variables as follows. Parents: 1) The core variables and one of second-layer variable were 

added to a new modeling space, 2) then, the second-layer variable was selected as target, and the 

TAN algorithm implemented, and 3) a sensitivity analysis to findings using the variance 

reduction metric was conducted, and the resulting core variables with higher variance reduction 

scoring [and therefore the most influential] were selected as parent of the evaluated second-layer 

variable.  

Discretization: an analysis of variance test was conducted for each new variable using as 

classification the variable that resulted in the most influential in the variance reduction metric. 
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Once the parents and discretization were defined for all the second-layer variables, one by one of 

the second layer variables were added to the core model and linked to their corresponding parent 

variables.  

Finally, the conditional probabilities between variables [parameters] were learned using the 

machine learning Expectation-Maximization [EM] algorithm (Koller, 2009; Uusitalo, 2007), the 

model was compiled and ready to use. The structural and parameter learning were conducted 

using the updated dataset [see 6.2.3].  

7.2.2. Model evaluation 

Given the PAM-typologies were obtained from a standard PCA and hierarchical clustering 

analysis and the objective of the model is capturing and displaying the features of each PAM-

typology in details, the model was evaluated by its ability to rightfully classify a farm in a PAM-

typology. According to the Spherical Payoff metric, the model was able to successfully classify 

the farms. Scores rank from 0 to 1, where 1 is the best performance [Table 18] (Aguilera et al., 

2011; Marcot, 2012; Norsys, 2018). The model also had an excellent score inferring the rest of  

variables, where most scored SP ≥ 0.92 [Table 18].   

Table 18. Sensitivity analysis and spherical payoff results for variables of PAMO.  

Variables  Sensitivity analysis1   Spherical 

payoff Read in this direction → A B C D E F G H I J   

PAM-Typology* A - 41.40 38.00 34.40 25.70 24.80 20.90 20.00 18.70 4.23   1.00 

Coffee yields  B 61.80 - 70.40 83.90 7.48 3.06 7.26 5.85 14.00 1.35   0.99 

Maintenance cost C 60.90 70.40 - 54.20 5.96 3.17 7.97 3.26 25.50 0.98   0.98 

Net income D 55.20 83.20 50.20 - 8.22 3.96 3.63 8.10 9.42 2.21   0.93 

Carbon stock  E 45.80 4.15 5.80 11.20 - 78.10 6.72 26.40 6.18 5.54   0.97 

Woody trees density  F 40.10 4.30 5.64 8.42 79.90 - 9.72 25.80 8.93 4.80   0.99 

Musaceas density G 32.80 3.09 3.08 0.70 3.81 13.80 - 2.89 9.26 0.03   0.89 

Shade level  H 35.20 4.34 7.12 11.40 31.00 23.80 9.59 - 3.46 3.37   0.95 

Coffee plant density  I 28.00 9.46 16.40 8.46 7.66 5.29 12.30 1.58 - 0.43   0.83 

Richness (Tree spp.)  J 8.43 1.72 8.60 1.81 8.25 6.24 0.47 6.76 0.44 -   0.92 

1 The sensitivity analysis for continues variables was done using the metric variance reduction and for 

categorical variables the metric mutual information [entropy reduction] (Marcot, 2012; Norsys, 2018). In 

both metrics, the higher the value of X over Y, higher reduction of variance or uncertainty of X over Y. The 

spherical payoff metric evaluates the model performance to infer a given variable base on information from 

others variables [the scores go from 0-1, where 1 is the best]. * Categorical variable. Bolded variables are the 

selected core variables used to define the PAM-typologies. 

A sensitivity analysis was run using mutual information method [entropy reduction] for the 

discrete variables, and variance reduction [VR] method for the continues (Aguilera et al., 2011; 
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Marcot, 2012; Norsys, 2018). The analysis revealed the degree of influence between variables 

[Table 18]. In both metrics, the higher the value of X over Y, the higher the reduction in variance 

or uncertainty of Y due to X (Marcot, 2012). The degree of influence of “X” variable over a “Y” is 

crucial to prioritize which input variables are essential to infer “Y.” However, given the 

interconnection between variables, even variables with lower influence can improve the expected 

values. For example, if farmers want to select a PAM-typology, by entering the values of yields 

[VR=41.4], annual maintenance cost range [VR=38], and woody trees density [VR=24.80], the PAM 

typologies and others unknown variables in the model and their corresponding uncertainty are 

inferred. If also the shade level [VR=20] is entered as the fourth piece of evidence, the model infers 

and update the state values of all the unknown variables again, and the uncertainty attached to 

the inferred values is reduced; the more evidence is entered to the model the lower the 

uncertainty of the results.  

We observed some resemblaces between the results of sensitivity analysis [VR or MI] and 

Pearson correlation coefficient values; however, the VR depicts the influence of a given variable’s 

states changes over a target variable considering the prior probability distribution of the non-

linear model, here in the PAM-model [continues and categorical variables]; and the Pearson 

correlation analysis evaluates the linear relationships between two continues variables (Hauke 

and Kossowski, 2011; Marcot, 2012; Norsys, 2018). Hence, the sensitivity analysis gives us a better 

assessment of the influence between the model variables that the correlation analysis. 

7.2.3. What typologies have a higher potential for productivity and mitigation given 

required shade level? 

As we discussed in Chapter 5, the shade of trees plays a pivotal role in coffee agroforestry 

systems by triggering or slowing down the biological and physical processes between the 

system’s components, which have a direct impact on the PAM-objectives. Therefore, we used the 

PAM-model to depict in details the feature of PAM-typologies using the shade levels as a 

reference point in the analysis. We approached this using the following hypothetical situation 

and question: Supposing a coffee farmer organization knows the required shade level for coffee 

of a given plantation: What typologies have a higher potential for productivity and mitigation 

given required shade level? We answered this question by conducting the following query in the 

model: first, the required shade level was instantiated, then each of the PAM-typologies; for each 

combination of shade level and PAM-typology the expected values of net income and carbon 

stock was registered.  
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7.2.4. Selecting coffee farming strategies under multiple-objectives under climate change 

in Nicaragua 

Coffee systems may have to experience adjustment in the intensity and type of farming 

practices under climate change conditions (Haggar and Schepp, 2012); changes in the shade levels 

are expected [See Chapter 5]. Also, there are efforts from different actors to promote and adopt 

farming strategies oriented to improve productivity, adaptation, and mitigation to climate change 

in the coffee systems; and scaling from climate-smart agriculture to climate smart-landscapes 

(Khatri-Chhetri et al., 2017; Scherr et al., 2012; Vaast et al., 2016). So, we used the PAM-model to 

run two hypothetical queries to identify farming strategies given multiples-objectives at different 

periods in coffee areas of Nicaragua: 1) in 2000, the farmers objective was to use the required 

shade level and maximize the net income of the coffee plantation; and 2) in 2050, the productivity, 

adaptation, and mitigation objectives were incorporated in the farming plans of coffee producers 

as a sustainable intensification strategy. In the first query, the objective is oriented to search the 

typology with the highest synergies between productivity and adaptation; mitigation is of 

marginal interest; in the second, the objective search for the typology with the highest synergy of 

the three PAM-objectives given the parameters entered and encoded in the model. The 

maximization consisted of the selection of the two highest state values of the net income [≥ 1466 

US$ Mz-1] and carbon stock [≥ 17 Mg C Mz-1] to Productivity and Mitigation, respectively; then, 

it used the required shade values under the conditions at 2000 and 2050 [RCP 4.5] from for coffee 

areas in Nicaragua as Adaptation measure [Chapter 5]. The results of both queries were 

registered and compared. 

As we mentioned, we explored what would be the most recommended PAM-typology given 

changes in a farming practice intensity and farmers’ PAM-objectives between 2000 and 2050. This 

analysis is based on the assumption that the performance of a coffee system in a given location 

under future climate conditions occurs in coffee systems at different locations under current 

conditions. Therefore, some farmers are currently dealing with conditions that other farmers will 

experience under climate change conditions. We used the farming strategies of current farmers 

to infer farming strategies under similar future conditions. In this sense, we conducted an 

analogue analysis (Pugh et al., 2016). Also, we assumed that the PAM-typology depicts the 

existing coffee system in the country; no new adapted coffee varieties or other new adaptation 

practices were available.  

The PAM-model captured the observed dependencies and interaction between its variables: 

farming practices [decision variables] and the outputs variables [yields, carbon stock, net 
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incomes, and tree spp. richness] –See sections 5.2 and 6.3.2 (Beer et al., 1998; Vaast et al., 2016). 

Therefore, the model instead of simulating the biophysical processes in the coffee system’s 

components interactions like process-based models do (van Oijen et al., 2010), it uses Bayesian 

inference based on the new evidence available and the encoded parameters [defined from 

observed data] in the model to infer and update the state of the unknown variables. For example, 

if a given coffee plantation required 40% of shading in 2000 and 60% in 2050, after entering the 

60% of shade in the model, the model propagates such new evidence and infers the new state of 

each unknown variable according to the new evidence. In this sense, each PAM-typology depicts 

a particular combination of states and levels [intensity] of farming practices and outputs 

observed.  

Given the nature and purpose of the PAM-model, the influence of the soil component is not 

directly incorporated in the model, but indirectly. We assume the soil conditions are incorporated 

indirectly in some model’s variables and coffee areas themselves: 1) current coffee areas fulfill the 

minimum suitability soil conditions for coffee cultivation [Chapter 2], and 2) fertilization 

(nutrition plans) and shade usage complement each other to provide the required nutrition 

according to the coffee farmers’ farming strategies [Figure 19, Figure 29 and Figure 30]. The 

fertilization and other farming practices that are related to competition for soil nutrients [like 

weed control] are incorporated in the model under cost management [Table 13 and Table 14]. 

Also, CAFS with a higher content of soil organic matter improves the physical and chemical soil 

properties. The soil organic matter is calculated from the below-ground biomass, which is 

estimated from the planting density of trees and coffee plants [Table 15].   

7.3. Results and discussion 

A Bayesian network model was created to explore and display the synergies and tradeoffs 

of PAM interactively in coffee agroforestry systems as a decision support system [Figure 32] 

(McCann et al., 2006; Pollino and Henderson, 2010). The model was made based on the PAM-

typologies developed to address the synergies between PAM-objectives [Chapter 6]; however, 

using the PAM-Model, we obtained more details over the tradeoff and synergies between PAM 

objectives encoded in the typologies and explore multiples scenarios [See 7.3.1, 7.3.2 and 7.5 

Appendices VII-B]. In this sense, the modeling enhanced the traditional typology approach to 

classify and describe agricultural systems.  
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Figure 32. PAM-typology model. IMW = Intensive management under Medium-dense shading 

of Woody trees; MDW = Medium-intensive management under Dense shading of Woody trees; 

LMM = Low-intensive management under Medium-slight shading of Musaceas; ISM = Intensive 

management under Slight shading of Musaceas; LMW = Low-intensive management under 

Medium-slight shading of Musaceas. 

In Chapter 6, a combination of PCA and hierarchical clustering analysis was used to define 

the typologies, which is a standard proceeding in the literature (Sarstedt and Mooi, 2014). Once 

the grouping was done, a mean separation test, descriptive statistic, and graphs were used to 

describe the typologies (Bhattarai et al., 2017; Meylan et al., 2013; Salazar et al., 2018). This 

approach is useful to give a general description but is constrained to general mean information. 

So, evolving the PAM-typologies into a model allows using Bayesian inference to explore how 

changes in the states of a variable influence others variables in a more intuitive and explicit 

manner. If one of the five typologies in the model is selected, an evidence propagation process 

occurs and due to the Bayesian inference and the conditional probability information of each 

variable the values of the unknown state of variables are inferred with a measure of uncertainty 

attached. For example, by selecting the typology IMW, in the case of coffee yields the inference 

resulted in a probability of 83.3 % that yields were in 29 to 42 qq Mz-1 and a probability of and 

16.7% that yields were in 23 to 29 qq Mz-1, and an expected value of 33.90 ± 5 [mean weighted 

value]. Also “ïf questions” in a forward or backward or both manner are possible using complete 

or missing information. Next, we show two applications of “if questions.” These are desired 

features in agricultural planning or policy-making processes, where different scenarios or 

situations are considered and evaluated (McCann et al., 2006; Shibl et al., 2013).   

Shade level (%) 

< 24
24 to 35
35 to 45
45 to 53
53 to 92

25.4
13.4
16.4
17.9
26.9

43.5 ± 21

PAM-Typology

ISM
IMW
MDW
LMW
LMM

19.4
8.96
28.4
32.8
10.4

Carbon stock (Mg C/Mz)

3 to 8
8 to 10
10 to 13
13 to 17
17 to 24
24 to 34

11.9
7.46
14.9
28.4
22.4
14.9

16.2 ± 7.3

Coffee density (plants/Mz)

625 to 2780
2780 to 3270
3270 to 3555
3555 to 3780
3780 to 5500

27.7
16.2
18.6
6.34
31.2

3280 ± 1200

Musaceas (Stems/Mz)

0
1 to 79
79 to 136
136 to 171
171 to 292
292 to 625

22.0
18.3
23.2
3.71
23.9
8.96

134 ± 140

Coffee yields (qq/mz)

4 to 9
9 to 14
14 to 23
23 to 29
29 to 42

20.9
14.9
26.9
17.9
19.4

19.6 ± 10

Net income (US$/Mz)

< 527
527 to 860
860 to 1466
1466 to 2034
2034 to 3010

22.4
14.9
25.4
22.4
14.9

1250 ± 740

Woody trees (trees/Mz)  

0
1 to 35
35 to 54
54 to 94
94 to 130
130 to 213

6.47
14.1
9.55
35.0
17.9
17.0

82 ± 54

Tree spp. richness  (no.)

< 2.7
2.7 to 3.4
3.4 to 3.6
3.6 to 4.5
4.5 to 9

44.1
16.1
5.36
10.8
23.6

3.75 ± 1.9

Annual maintenance cost (US$/mz)

182 to 575
575 to 732
732 to 1085
1085 to 1397
1397 to 1820

22.4
19.4
25.4
23.9
8.96

882 ± 390

Core variables

Decision making variables

Additional farming variables
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7.3.1. What typologies have a higher potential for productivity and mitigation given a 

required shade level? 

We framed this query using a hypothetical case where a coffee farmer organization plan to 

improve their coffee farmers’ productivity considering adaptation and mitigation objectives. So, 

the organization stated the following question: What typologies have a higher potential for 

productivity and mitigation given a required shade level? Our results show that it is possible to 

obtain different potential for productivity and mitigation under the same shade level. For 

example, observing the shade levels of 35-45% under the different typologies in Figure 33, we can 

see a range of different outcomes over net income and carbon stock. The results indicate that for 

shade levels ≥ 35%, the IMW has the highest potential by showing the highest net income and 

carbon stock [Figure 33]. For lower shade levels [shade < 35%] the typologies MDW and ISM offer 

the highest potential. MDW has higher carbon stock than ISM, and ISM has higher net income 

than MDW at same shade levels. The LMW and LMM have higher tradeoffs: LMW has a medium 

to high potential for carbon mitigation but lowers net income, and LMM has a lower net income 

and carbon stock. Considering that the usage of a given shade level depends in practice on 

altitude [Chapter 5](Lara-Estrada, 2005; Muschler, 2001), the results suggest that IMW is the most 

suitable for medium and lower altitudes, and ISM for higher.  
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Figure 33. Net income and carbon stock for given shade levels per each typology. Values indicate 

the probability of the respective most probable states for net income and carbon stock. * These 

shade levels did not occur in that typologies; so, the model gives a uniform probability for 

unknown interactions. IMW = Intensive management under Medium-dense shading of Woody 

trees; MDW = Medium-intensive management under Dense shading of Woody trees; LMM = 

Low-intensive management under Medium-slight shading of Musaceas; ISM = Intensive 

management under Slight shading of Musaceas; LMW = Low-intensive management under 

Medium-slight shading of Musaceas. 

By knowing which typologies have higher synergies to PAM or PA for a given shade level 

under climate change, farmers can evaluate which typologies are more suitable to their current 

coffee plantations conditions, risk perception, priorities, and preferences (Castellanos et al., 2013; 

Somarriba, 2009). A study conducted in the region over the risk perception of farmers over 

different coffee production stressors pointed out that even if farmers know what the problems 

and possible solutions are [adatation options], they might not implement the most promising but 

the option that better fit to their current situation and limitations (Tucker et al., 2010). So, instead 

of promoting the best alternative or farming strategy for a given condition, a set of possible 



109 

 

alternatives like we show here might be more useful for the farmers and decision maker in the 

coffee sector.   

7.3.2. Selecting farming strategies considering multiple-objectives under climate change 

conditions   

Here we evaluated two queries, the first query corresponds to a scenario that maximize the 

net incomes and use the required shade level given the local temperatures in 2000; and the second 

query maximizes the net incomes and carbon stock given the required shade level according to 

temperature values under climate change in 2050. The IMW, ISM, and MDW were the PAM-

typologies selected as recommended typologies for Nicaragua’s coffee areas at 2000 and 2050. 

However, the proportional coffee areas for which they were recommended were different in both 

period [Figure 34]; ISM and MDW were the most dominant typologies in 2000, and MDW in 2050 

[Figure 34]. These results indicate the most probable PAM-typology; however, it is possible to 

obtain a second or third probable PAM-typologies given the conditions, but for simplicity the 

focused over the most probable [Figure 32 and Figure 33]. The typologies LMW and LMM were 

not selected because their net incomes were lower than the queries conditions [Figure 33 and 

Table 16]. 

We did a tracking analysis of the changes between periods [Table 19], and the results show 

that the 100% and 55% of coffee areas which recommendation was IMW and ISM in 2000 changed 

to MDW in 2050; and about the 30% of ISM change to IMW by 2050. In essence, the changes in 

objectives [from PA to PAM] and conditions between 2000 and 2050 due to climate change led to 

changes in farming practices and therefore recommended PAM-typology. 
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Figure 34. PAM-typologies for 2000 and 2050. IMW = Intensive management under Medium-

dense shading of Woody trees; MDW = Medium-intensive management under Dense shading of 

Woody trees; and ISM = Intensive management under Slight shading of Musaceas. 

 

Table 19. The changes of the recommended PAM-typologies for Nicaragua’s coffee areas between 2000 

and 2050. 

Typology 
Coffee areas [%] in 2050   

Total 
IMW ISM MDW   

20
00

 IMW 0.00 0.00 7.09   7.09 

ISM 13.64 6.98 25.23   45.86 

MDW 0.00 0.00 47.05   47.05 

Total 13.64 6.98 79.38   100.00 

 

The changes in the recommended typology for a given coffee area between periods 

correspond to the changes in objectives and required shade levels due to climate change. The 

2000-query assumed a scenario where farmers focus on obtaining the maximum possible net 

incomes and use the required shade levels [Productivity and Adaptation], and they are non-

interested to mitigating climate change. Farmers focus their strategies in maintaining or 

increasing the profitability of coffee plantations, and are more concerned about other limiting 

factors that have affected their coffee production in past and recent years like international price 

crises and coffee rust epidemics (Avelino et al., 2015b; Bacon, 2005; Tucker et al., 2010). About 

shading, we used the required shade levels in this experiment, but in practice, this is not always 

the case. We discussed in Chapter 5 that farmers tend to use higher shade levels than required at 

altitudes with or close to the optimal temperature for coffee; which may due to a strategy to 
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reduce the inputs levels in the plantations or (un)intentional mismanagement of the shade levels. 

One of the causes of the past coffee rust epidemic was the poor management of the shading in 

coffee plantations in Central America (PROMECAFE, 2013). In this study, we used shade level 

values calculated from air temperature [shade model from Chapter 5]; the changes in the local 

temperature of coffee areas are defined by the interaction between altitude, latitude, and 

longitude inside each evaluated period. Between periods, climate change becomes a new source 

of temperature variation [Table 5]. So, an increment in the required shade levels will be required 

under climate change conditions as an adaptation practice [Figure 24]. On average for the country 

coffee areas, an increment about 53% in the 2000-shade levels will be required by 2050 [Table 20]. 

This increment will require a gradual adjustment in the tree component of the coffee agroforestry 

systems [CAFS] between periods. Given higher shade levels were observed at a higher planting 

density of woody shade trees [Figure 28], a rise in the carbon content of CAFS is expected. 

According to our results, such rising indicates a national average carbon stock increment in CAFS 

about 50% in 2050 [Table 20]. Therefore, given the negative correlation between required shade 

and altitude [Chapter 5], we expect a similar relationship between carbon stock and altitude, 

where coffee plantations at lower altitudes [suboptimal conditions] may have a higher carbon 

stock due to higher shade levels, and vice-versa, under current and future conditions. Also, the 

increasing of the planting density of trees will be an opportunity for increasing tree species 

richness, which can improve the generation of services and goods for conservation and income 

diversification purposes (Moguel and Toledo, 1999; Somarriba et al., 2004).  

Table 20. National average values of shade level, net income and carbon stock for coffee areas in 

Nicaragua. 

    Variable     Units 
Mean (SD) 

2000  2050 

Shade % 43.98 (31.64) 
 

67.52 (26.07) 

Net Income US$ Mz-1 1979.26 (308.49)  1794.46 (208.28) 

Carbon Stock Mg C Mz-1 16.92 (4.79)  25.3 (4.55) 

 

A net income reduction of 9.33 % is expected in overall for all coffee areas under climate 

change conditions [Table 20]. The net income was calculated based on current management cost 

(including harvesting) and incomes from sales of coffee and musaceas [when musaceas were 

presented in the plantation] –See 6.2.2. The ISM, IMW, and MDW are the typologies that have the 

highest expenditures in the annual maintenance cost, but also higher yields and net incomes. A 

reduction of less than 10% in net income may be lower if we consider those coffee areas will suffer 

a significant land suitability downgrade under the less severe climate change scenarios by 2050 
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[RCP 4.5]; where about 50% of coffee areas classified as excellent and very good land suitability 

might become moderate and marginal –See Chapter 3. However, this is possible due to in both of 

our queries the highest net incomes were selected as a condition; in our results the higher net 

incomes are associated with more intensive farming management [labor and input costs 

(agrochemicals)] that lead to higher yields [Table 16, Figure 29 and Figure 30]. Therefore, we 

might have a higher reduction in the incomes under less intensive management typologies like 

LMW and LMM; for example, Gay et al. (2006) using an econometric analysis reported a 34% of 

coffee production reduction in traditional rustic [similar to LMW] coffee systems due to climate 

change in a province in Mexico by 2020.  

In the other hand, the use of the required shade level might compensate the warming 

conditions and reduce the land suitability downgrade due to climate change [Figure 24] but also 

promote the generation of others ecosystem services oriented to income diversification, 

mitigation, and even conservation purposes. In this sense, the queries consider multiples PAM-

objectives under a sustainable intensification approach (Garnett et al., 2013; Pretty et al., 2011), 

where most probable PAM-typology depicts the farming strategy. Others efforts in sustainable 

intensification look to overcome some interactions that constrain the CAFS performance; use of 

adapted coffee varieties to shade conditions can improve the performance of coffee agroforestry 

systems (Bertrand et al., 2011; Lashermes et al., 2009) and fulfill and even surpass the income gaps 

describe here due to higher shade levels under climate change conditions.  

If we consider the series of the recent challenges that the coffee sector have experienced (low 

coffee price crisis and coffee rust outbreak), and the 67% of the country’s coffee farmers are small 

[less than 20 Mz], the queries may describe an optimistic scenario where farmers have the 

financial strength and technical support to invest in the requiered adjustment in their coffee 

plantations, which is not the case. Nicaraguan small coffee farmers are characterized for using a 

low level of agrochemicals, labor, and coffee planting densities, and have old plantations, and 

consequently low yields (IICA, 2003). Our scenario for 2050 considers a medium to high intensive 

farming management as results of the query of maximizing the net incomes; therefore, actual 

small farmers would have to increase their expenditures in their farming practices [inputs and 

labor] and even establishing new coffee plantations. The renovation of coffee plantations requires 

an investment that hardly can be assumed by small farmers without external financial and 

technical support (Avelino et al., 2015b). According to recent reports, the investment and support 

to coffee farmers have been minimum. The investment of the coffee industry in sustainability 

programs oriented to support and increase the resilience of coffee farmers is 0.035% of the yearly 

worldwide coffee industry value (Panhuysen and Pierrot, 2018).  
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Even though, there are some ongoing positive actions. Research institutions are 

implementing breeding programs to select and release new coffee varieties with diverse features 

that promise improving the performance of coffee plantations under future conditions (Bertrand 

et al., 2011; Lashermes et al., 2009; WCR, 2018). Such new varieties can be incorporated in the 

PAM-model to evaluate the impact of different strategies and conditions on the sustainability of 

coffee systems and the implications to reach the PAM and conservation objectives in a decision-

making stage

7.4. Conclusions 

We introduced a new alternative to enhance the analysis of coffee systems by evolving 

traditional farm typology systems into a Bayesian modeling tool. The PAM-model captured the 

complex interaction between the components of coffee agroforestry system considering the 

original PAM-typologies. As a result, we obtain more comprehensive information on each PAM-

typology’s features and allow us to observe the possible impacts of changes in the farming 

strategies over the coffee system performance.  

We explored the tradeoffs and synergies of coffee agroforestry systems considering 

productivity, adaptation, and mitigation to climate change objectives. We used an analogue 

modeling approach, where the performance of current coffee farms at temperature conditions 

that required similar shade levels than other location under future climate change conditions, to 

explore the effects of diverse objectives under a sustainable intensification strategy. Our results 

suggest that the expected adverse effects of climate change can be alleviated in some magnitude 

using and adjusting the current farming system [PAM-typologies] under a sustainable 

intensification strategy in the coffee areas in Nicaragua. Also, we believe that the typologies, 

PAM-model, and results of this study have a potential usage in planning and decision making 

processes where decision makers evaluate different strategies and practices.    

7.5. Appendices VII 

Appendix VII-A. Notes on the PAM-model  

 

Discretization. The discretization of continuous variables is commonly identified as a 

limitation in BN modeling (Uusitalo, 2007); however, in the model, the discretized states are a 

favorable feature for better understanding and communication of the interaction between 

farming practices in a decision-making setting. Also, in the model’s variables discretization, the 
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states of variables were defined base on mean separation test that ensures the states have 

significant relevance considering the typologies. 

Defined interaction. Although the described interactions between variables were in line with 

the literature, the model only infers interactions encoded in the dataset utilized; and for unknown 

interaction, the model provided uniform probabilities for the states of variables involved. 

However, if new information is available, it can be taught to the model adding new conditional 

relationships between variables or continue improving the existing ones (Norsys, 2018).  

Missing components and variables. Some farming practices variables were not included to 

simplify the model (fertilization rates, pesticides usage, incomes from coffee and musaceas, 

others], but proxy variables were used instead. For example, labor and inputs cost of practices 

were used to estimate maintenance cost; so, maintenance cost represents the level of farming 

intensification. However, if more variables are required, they can be added to the model just like 

the case of coffee plants density. 

 

Appendix VII-B. The “If questions” in PAM-model 

 

In addition to the estimation of the PAM-typology given a set of farming practices, the PAM-

model can deal with “If questions” in a forward or backward or both manners and using complete 

or missing information [Figure A-10]. For example, the model can be used to conduct the 

following if questions:  

1) What would be the probable impacts over the coffee yields if the annual maintenance 

budget is reduced and the shade levels increased, or 

2) Which farming practices produce the higher net incomes if the maintenance cost budget 

is reduced; or  

3) What are the required planting densities of shade tree if a given shade level is required 

in a given PAM-typology. 

 

Also, inside each typology, the user can explore some changes in the practices or explore 

what typology fit better to the required changes in the farming practices.  
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Figure A-10. Using the PAM-model to explore the interaction between farming practices and their 

impacts over the other variables. A) Influence of woody trees and musaceas density over shade 

level: A1) without woody trees and high density of musaceas; and A2) high density of woody 

trees and without musaceas. B) Influence of farming intensification and shade level over coffee 

yields. B1) the highest maintenance cost (high usage of inputs and labor] and lowest shade level; 

B2) the lowest maintenance cost and shade level. Notice the influence over the other model 

variables. 
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8. CONCLUSIONS 

Agriculture is and will continue facing multiple threats that challenge its capacity to produce 

enough food and goods for a growing population. Decision-makers need information, 

knowledge, and the tools to evaluate potential damages and to find solutions to these threats. In 

this thesis, I explored the challenges and impacts that climate change represents to coffee 

production in Central America and evaluated the current coffee systems in terms of productivity 

and adaptation and mitigation potential to climate change. To do this, I conducted a series of 

studies that form part of an integrated framework of analysis that include 1) a land suitability 

evaluation under current and future conditions, 2) an evaluation of adaptation practices to 

climate change, and 3) the identification of potential tradeoff and synergies between productivity, 

adaptation and mitigation objectives in coffee agroforestry systems. 

1) Land suitability evaluation under current and future conditions. Most of the coffee in Central 

America is cultivated in agroforestry systems. Agroforestry systems are highly complex and 

diverse in objectives, structure, and composition; such complexity constrains the use of process-

based models beyond the plot level. At the regional level, land evaluation frameworks have been 

used to assess the suitability of particular pieces of land for crop production. I, therefore, 

developed the first land evaluation BN model for coffee, named Agroecological Land Evaluation 

for Coffea arabica L. (ALECA). The model is based on a new set of suitability functions developed 

from empirical data and a literature review [Chapter 2]. ALECA was then used to evaluate the 

impacts of climate change on land suitability for coffee production [Chapter 3]. Under the less 

severe climate change scenarios for 2050 [RCPs 2.6 and 4.5], approximately 50% of the area 

currently considered excellent or very good for coffee production will experience a downgrade 

to only moderate and marginal suitability and virtually disappear under the severe climate 

change scenario based on RCP 8.5. The downgrade in land suitability will negatively impact the 

coffee areas; so, adaptation actions need to be implemented in time to avoid a reduction in the 

productivity and quality of the coffee produced in the region.      

2) Evaluation of adaptation practices to climate change. Agroforestry generates multiple services 

and goods for farmers and the environment. The regulation of the microclimate is a service that 

improves the local environmental conditions and therefore has a high potential to reduce the 

impact of climate change. I explored the use of different shade levels in the coffee plantations to 

regulate the microclimate and developed a new simple BN shade model to infer the required 

shade level considering local air temperatures [Chapter 5]. The model includes suitability 

functions from ALECA that allows the shade model to estimate the temperature suitability for 
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coffee under shaded and unshaded conditions. The model was validated and used on coffee areas 

in Nicaragua under current conditions and a scenario of climate change [RCP 4.5]. The results 

showed that even at higher altitudes an increment in shading levels will be required to alleviate 

the impacts of climate change and that at lower altitudes the cooling effect of shade trees may not 

be enough in some areas to fully compensate for the warming conditions. The expected changes 

in the shade levels should be considered in future agroforestry planning processes in addition to 

farmers' objectives. Overall, the analysis showed that shading improves the local conditions in 

favor of the coffee plant, and should, therefore, be considered as an adaptation measure in further 

studies that address climate change impacts on coffee systems. 

  3) Potential tradeoffs and synergies between productivity, adaptation, and mitigation [PAM] objectives 

in coffee agroforestry systems. I developed a new farming typology and model to enhance the 

analysis of tradeoffs and synergies between productivity, adaptation and mitigation objectives 

[Chapter 6 and 7]. The new PAM-typologies classify the different existing coffee agroforestry 

systems based on several key features influencing PAM objectives. The farm type dominated by 

woody trees has many synergies between PAM-objectives if shade levels are medium to high, 

but if shade levels are low, synergies are more abundant in the type dominated by musaceas.  

The BN model based on a farm typology enhances the understanding of the synergies and 

tradeoffs found in different systems when considering multiple objectives. It can be used to 

explicitly display the differences and similarities and gradual changes between typologies, and 

also provides the option to evaluate changes in farmers’ objectives and farming practices. My 

application of the model showed that under future climate conditions, even when using optimal 

shade levels as an adaptation measure against higher temperatures and farm management that 

maximizes production, a reduction in income from coffee cultivation is inevitable in Nicaragua. 

However, the higher tree densities and higher carbon contents of these coffee agroforestry 

systems at least provide more food and shelter to wild species and improve conservation efforts.  

8.1. Outlook and concluding remarks  

The studies presented in this thesis represent a framework to assess the impacts of climate 

change on coffee systems in Central America and to evaluate possible management alternatives 

considering multiple objectives. A similar modeling approach can be used by researchers and 

practitioners to address other threats to coffee production or to evaluate other agricultural 

activities.   

The single models described in the studies can also be used to explore other problems or 

subjects. The land suitability model, for example, can be used to evaluate a single farm or to 
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identify new areas with a high potential for coffee cultivation. The shade model could be 

integrated into an agroforestry carbon model to explore the possible implications of changes in 

tree species composition and density in coffee plantations on the below- and aboveground carbon 

stocks, which would be particularly useful to conduct carbon content estimations under 

uncertainty. The same strategy used to create the PAM-typologies and to explore the potential 

synergies and tradeoff between PAM-objectives can be used to explore others objectives or add 

new ones to the existing ones, e.g., tree species richness as a proxy for conservation objectives. 

This thesis provides not only new modeling tools for the agroforestry community, but also 

new data that enhances the scientific knowledge base in the area of coffee production under 

climate change in Central America. The changes in land suitability between current and future 

climates provide an estimation about the magnitude of change that is to be expected and also 

enable stakeholders to compare the future potential of different coffee areas in the region. 

Furthermore, the study on shade levels and the corresponding effect on air temperature 

suitability offers a first assessment of the adaptation-by-cooling potential of agroforestry systems, 

and the new farming strategy typologies enable users to easily assess the synergies and tradeoffs 

between productivity, adaptation and mitigation objectives in coffee agroforestry systems.        

Given the current efforts to select and breed new coffee varieties, an update of ALECA 

incorporating the different responses of different coffee varieties to the climate, soil, and landform 

components of the model may become necessary, as well as interactions between the three 

components. The shade model could be further improved by adding new variables and updating 

the model with additional data from different shade systems to better capture the differences in 

structure and composition of different coffee plantations.  

Finally, the results of my thesis show that coffee farmers in Central America need support 

to increase their resilience against negative impacts of climate change. Otherwise, the livelihoods 

of millions of people involved in coffee production will be threatened, and land use changes from 

coffee agroforestry systems to pastoral or crop farming systems may threaten biodiversity and 

decrease environmental quality sharply in the region. Decision makers in the coffee sector, 

governments, and national and international organizations must step up and provide financial 

support, tools and guidelines for coffee producers. In order to ensure the success of such efforts 

and actions, strategic planning to identify the most suitable strategy for each farmer is necessary. 

This thesis provides new knowledge, data and tools to support this endeavor, and to ensure the 

continuity of coffee cultivation in Central America.   
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